Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Age-Dependent Presentation and Clinical Course of 1465 Patients Aged 0 to Less than 18 Years with Ovarian or Testicular Germ Cell Tumors; Data of the MAKEI 96 Protocol Revisited in the Light of Prenatal Germ Cell Biology.

  • Gabriele Calaminus‎ et al.
  • Cancers‎
  • 2020‎

To evaluate prognostic factors in pediatric patients with gonadal germ cell tumors (GCT).


Integrative Bioinformatic Analysis of Transcriptomic Data Identifies Conserved Molecular Pathways Underlying Ionizing Radiation-Induced Bystander Effects (RIBE).

  • Constantinos Yeles‎ et al.
  • Cancers‎
  • 2017‎

Ionizing radiation-induced bystander effects (RIBE) encompass a number of effects with potential for a plethora of damages in adjacent non-irradiated tissue. The cascade of molecular events is initiated in response to the exposure to ionizing radiation (IR), something that may occur during diagnostic or therapeutic medical applications. In order to better investigate these complex response mechanisms, we employed a unified framework integrating statistical microarray analysis, signal normalization, and translational bioinformatics functional analysis techniques. This approach was applied to several microarray datasets from Gene Expression Omnibus (GEO) related to RIBE. The analysis produced lists of differentially expressed genes, contrasting bystander and irradiated samples versus sham-irradiated controls. Furthermore, comparative molecular analysis through BioInfoMiner, which integrates advanced statistical enrichment and prioritization methodologies, revealed discrete biological processes, at the cellular level. For example, the negative regulation of growth, cellular response to Zn2+-Cd2+, and Wnt and NIK/NF-kappaB signaling, thus refining the description of the phenotypic landscape of RIBE. Our results provide a more solid understanding of RIBE cell-specific response patterns, especially in the case of high-LET radiations, like α-particles and carbon-ions.


Moesin (MSN) as a Novel Proteome-Based Diagnostic Marker for Early Detection of Invasive Bladder Urothelial Carcinoma in Liquid-Based Cytology.

  • Jeong Hwan Park‎ et al.
  • Cancers‎
  • 2020‎

Bladder urothelial carcinoma (BUC) is the most lethal malignancy of the urinary tract. Treatment for the disease highly depends on the invasiveness of cancer cells. Therefore, a predictive biomarker needs to be identified for invasive BUC. In this study, we employed proteomics methods on urine liquid-based cytology (LBC) samples and a BUC cell line library to determine a novel predictive biomarker for invasive BUC. Furthermore, an in vitro three-dimensional (3D) invasion study for biological significance and diagnostic validation through immunocytochemistry (ICC) were also performed. The proteomic analysis suggested moesin (MSN) as a potential biomarker to predict the invasiveness of BUC. The in vitro 3D invasion study showed that inhibition of MSN significantly decreased invasiveness in BUC cell lines. Further validation using ICC ultimately confirmed moesin (MSN) as a potential biomarker to predict the invasiveness of BUC (p = 0.023). In conclusion, we suggest moesin as a potential diagnostic marker for early detection of BUC with invasion in LBC and as a potential therapeutic target.


N-Acetylcysteine Promotes Metastatic Spread of Melanoma in Mice.

  • Elena Obrador‎ et al.
  • Cancers‎
  • 2022‎

N-acetylcysteine (NAC) is a direct Cys donor and a promoter of glutathione (GSH) synthesis. GSH regulates melanoma growth and NAC has been suggested to increase melanoma metastases in mice. We found that high therapeutic doses of NAC do not increase the growth of melanoma xenografts, but can cause metastatic spread and distant metastases. Nevertheless, this is not due to an antioxidant effect since NAC, in fact, increases the generation of reactive oxygen species in the growing metastatic melanoma. Trolox, an antioxidant vitamin E derivative, administered in vivo, decreased metastatic growth. Metastatic cells isolated from NAC-treated mice showed an increase in the nuclear translocation of Nrf2, as compared to controls. Nrf2, a master regulator of the antioxidant response, controls the expression of different antioxidant enzymes and of the γ-glutamylcysteine ligase (the rate-limiting step in GSH synthesis). Cystine uptake through the xCT cystine-glutamate antiporter (generating intracellular Cys) and the γ-glutamylcysteine ligase activity are key to control metastatic growth. This is associated to an increase in the utilization of L-Gln by the metastatic cells, another metastases promoter. Our results demonstrate the potential of NAC as an inducer of melanoma metastases spread, and suggest that caution should be taken when administering GSH promoters to cancer patients.


Immunogenic Cell Death by the Novel Topoisomerase I Inhibitor TLC388 Enhances the Therapeutic Efficacy of Radiotherapy.

  • Kevin Chih-Yang Huang‎ et al.
  • Cancers‎
  • 2021‎

Rectal cancer accounts for 30-40% of colorectal cancer (CRC) and is the most common cancer-related death worldwide. The preoperative neoadjuvant chemoradiotherapy (neoCRT) regimen is the main therapeutic strategy for patients with locally advanced rectal cancer (LARC) to control tumor growth and reduce distant metastasis. However, 30-40% of patients achieve a partial response to neoCRT and suffer from unnecessary drug toxicity side effects and a risk of distant metastasis. In our study, we found that the novel topoisomerase I inhibitor lipotecan (TLC388) can elicit immunogenic cell death (ICD) to release damage-associated molecular patterns (DAMPs), including HMGB1, ANXA1, and CRT exposure. Lipotecan thereby increases cancer immunogenicity and triggers an antitumor immune response to attract immune cell infiltration within the tumor microenvironment (TME) in vitro and in vivo. Taken together, these results show that lipotecan can remodel the tumor microenvironment to provoke anticancer immune responses, which can provide potential clinical benefits to the therapeutic efficacy of neoCRT in LARC patients.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: