2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Effect of Additional Mass on Natural Frequencies of Weight-Sensing Structures.

  • Guiyong Guo‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2023‎

The phenomena of variability and interference in the natural frequencies of weight-sensing structures applied in complex working conditions must solve the problem of reducing or eliminating resonance under low-frequency vibrations to maximize stability, accuracy and reliability. The influence laws of the additional mass with relevant characteristics on the natural frequencies, which include the components of mass, stiffness and center-of-mass distribution, etc. Firstly, the theoretical formulas of the mathematical model are given based on different characteristics of the weight-sensing structure, and various combinations of additional masses on the weight-sensing structures are adjusted in the X-, Y-, and Z-directions. The key factors to be specifically considered in the theoretical formulas are discussed through simulation analysis and experimental validation. Secondly, the locking strength of the fastening screws of some components was changed, and another component was placed on the experimental platform in the experiment. The results show that the mass, center-of-mass, stiffness distribution and other factors of the additional mass have different effects on the natural frequencies, which are important for the demand for high-precision, high-stability weighing measurement. The results of this research can provide an effective scientific evaluation basis for the reliable prediction of natural frequencies.


Piezotronic Antimony Sulphoiodide/Polyvinylidene Composite for Strain-Sensing and Energy-Harvesting Applications.

  • Jakub Jała‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2023‎

This study investigates the piezoelectric and piezotronic properties of a novel composite material comprising polyvinylidene fluoride (PVDF) and antimony sulphoiodide (SbSI) nanowires. The material preparation method is detailed, showcasing its simplicity and reproducibility. The material's electrical resistivity, piezoelectric response, and energy-harvesting capabilities are systematically analyzed under various deflection conditions and excitation frequencies. The piezoelectric response is characterized by the generation of charge carriers in the material due to mechanical strain, resulting in voltage output. The fundamental phenomena of charge generation, along with their influence on the material's resistivity, are proposed. Dynamic strain testing reveals the composite's potential as a piezoelectric nanogenerator (PENG), converting mechanical energy into electrical energy. Comparative analyses highlight the composite's power density advantages, thereby demonstrating its potential for energy-harvesting applications. This research provides insights into the interplay between piezoelectric and piezotronic phenomena in nanocomposites and their applicability in energy-harvesting devices.


Modelling and Laboratory Tests of the Temperature Influence on the Efficiency of the Energy Harvesting System Based on MFC Piezoelectric Transducers.

  • Marek Płaczek‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2019‎

Macro Fibre Composites (MFC) are very effective piezoelectric transducers that, among others, can be used as elements of energy harvesting systems. The possibility to generate electric energy, for example, from mechanical vibrations in order to power electrical elements that could not be powered in another way (using wires or batteries) is a great solution. However, such a kind of systems has to be designed by considering all phenomena that could occur during the exploitation of the system. One of those phenomena is the temperature fluctuation during the device operation. In the presented research work, a mathematical model of the energy harvesting system based on MFC transducers is proposed. The mathematical model was validated by laboratory tests conducted on a laboratory stand equipped with a universal mechanical testing machine (Instron Electropuls 10000) and a thermal chamber. During the tests, the samples were subjected to cyclic excitation simulating the operation of the system in various environmental conditions by forcing changes in the system operation temperature with the constant conditions of its excitation.


Evaluation of the Vibration Signal during Milling Vertical Thin-Walled Structures from Aerospace Materials.

  • Szymon Kurpiel‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2023‎

The main functions of thin-walled structures-widely used in several industries-are to reduce the weight of the finished product and to increase the rigidity of the structure. A popular method for machining such components, often with complex shapes, is using milling. However, milling involves undesirable phenomena. One of them is the occurrence of vibrations caused by the operation of moving parts. Vibrations strongly affect surface quality and also have a significant impact on tool wear. Cutting parameters, machining strategies and tools used in milling constitute some of the factors that influence the occurrence of vibrations. An additional difficulty in milling thin-walled structures is the reduced rigidity of the workpiece-which also affects vibration during machining. We have compared the vibration signal for different approaches to machining thin-walled components with vertical walls made of Ti6Al4V titanium alloy and Inconel 625 nickel alloy. A general-purpose cutting tool for machining any type of material was used along with tools for high-performance machining and high-speed machining adapted for titanium and nickel alloys. A comparison of results was made for a constant material removal rate. The Short-Time Fourier Transform (STFT) method provided the acceleration vibration spectrograms for individual samples.


Influence of Tools and Cutting Strategy on Milling Conditions and Quality of Horizontal Thin-Wall Structures of Titanium Alloy Ti6Al4V.

  • Szymon Kurpiel‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2023‎

Titanium and nickel alloys are used in the creation of components exposed to harsh and variable operating conditions. Such components include thin-walled structures with a variety of shapes created using milling. The driving factors behind the use of thin-walled components include the desire to reduce the weight of the structures and reduce the costs, which can sometimes be achieved by reducing the machining time. This situation necessitates, among other things, the use of new machining methods and/or better machining parameters. The available tools, geometrically designed for different strategies, allow working with similar and improved cutting parameters (increased cutting speeds or higher feed rates) without jeopardizing the necessary quality of finished products. This approach causes undesirable phenomena, such as the appearance of vibrations during machining, which adversely affect the surface quality including the surface roughness. A search is underway for cutting parameters that will minimize the vibration while meeting the quality requirements. Therefore, researching and evaluating the impact of cutting conditions are justified and common in scientific studies. In our work, we have focused on the quality characteristics of horizontal thin-walled structures from Ti6Al4V titanium alloys obtained in the milling process. Our experiments were conducted under controlled cutting conditions at a constant value of the material removal rate (2.03 cm3⁄min), while an increased value of the cut layer was used and tested for use in finishing machining. We used three different cutting tools, namely, one for general purpose machining, one for high-performance machining, and one for high-speed machining. Two strategies were adopted: adaptive face milling and adaptive cylindrical milling. The output quantities included the results of acceleration vibration amplitudes, and selected surface topography parameters of waviness (Wa and Wz) and roughness (Ra and Rz). The lowest values of the pertinent quantities were found for a sample machined with a high-performance tool using adaptive face milling. Surfaces typical of chatter vibrations were seen for all samples.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: