Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

TGFβ3-mediated induction of Periostin facilitates head and neck cancer growth and is associated with metastasis.

  • Xing Qin‎ et al.
  • Scientific reports‎
  • 2016‎

The matrix-specific protein periostin (POSTN) is up-regulated in human cancers and associated with cancer growth, metastasis and angiogenesis. Although the stroma of cancer tissues is the main source of POSTN, it is still unclear how POSTN plays a role to facilitate the interplay between cancer cells and cancer-associated fibroblasts (CAFs) in head and neck cancer (HNC), thereby promoting tumorigenesis via modifying the tumor microenvironment. Herein, we have performed studies to investigate POSTN and its role in HNC microenvironment. Our results indicated that POSTN was significantly up-regulated in HNCs, especially in the tissues with lymph node metastasis. Moreover, POSTN was highly enriched in the stroma of cancer tissues and produced mainly by CAFs. More importantly, we have pinpointed TGF-β3 as the major upstream molecular that triggers the induction of POSTN in CAFs. As such, during the interaction between fibroblasts and cancer cells, the increased stromal POSTN induced by TGF-β3 directly accelerated the growth, migration and invasion of cancer cells. Hence, our study has provided a novel modulative role for POSTN on HNC progression and further reveals POSTN as an effective biomarker to predict metastasis as well as a potential cancer therapeutic target.


LncRNA LINC00460 promotes EMT in head and neck squamous cell carcinoma by facilitating peroxiredoxin-1 into the nucleus.

  • Yingying Jiang‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2019‎

The lncRNA LINC00460 plays crucial roles in several epithelial cancers, although its mechanisms of action differ greatly in different cellular contexts. In this study, we aimed to determine the potential clinical applications of LINC00460 and elucidate the mechanisms by which LINC00460 affects the development and progression of head and neck squamous cell carcinoma (HNSCC).


Oral cancer cell‑derived exosomes modulate natural killer cell activity by regulating the receptors on these cells.

  • Xueqin Zhu‎ et al.
  • International journal of molecular medicine‎
  • 2020‎

Oral cancer (OC) is the most common type of head and neck malignant tumor. Tumor‑derived exosomes induce a complex extracellular environment that affects tumor immunity. In the present study, exosomes were isolated from OC cell lines (WSU‑HN4 and SCC‑9) by ultrafiltration and the protein content of these oral cancer‑derived exosomes (OCEXs) was analyzed by mass spectrometry, which revealed the enrichment of transforming growth factor (TGF)‑β1. Natural killer (NK) cells were examined by flow cytometry following co‑culture with OCEXs. The expression of killer cell lectin like receptor K1 (KLRK1; also known as NKG2D, as used herein) and natural cytotoxicity triggering receptor 3 (NCR3; also known as NKp30, as used herein) in NK cells was found to be significantly upregulated following co‑culture with the OCEXs for 1 day, whereas this expression decreased at 7 days. Killer cell lectin like receptor C1 (KLRC1; also known as NKG2A; as used herein) expression exhibited an opposite trend at 1 day. In addition, NK cell cytotoxicity against the OC cells was enhanced at 1 day, but was attenuated at 7 days. TGF‑β1 inhibited the function of NK cells at 7 days, whereas it had no obvious effects at 1 and 3 days. On the whole, the findings of the present study reveal changes in NK cell function and provide new insight into NK cell dysfunction.


Cancer-associated Fibroblast-derived IL-6 Promotes Head and Neck Cancer Progression via the Osteopontin-NF-kappa B Signaling Pathway.

  • Xing Qin‎ et al.
  • Theranostics‎
  • 2018‎

Osteopontin (OPN), a chemokine-like protein, plays a crucial role in the proliferation and metastasis of various cancers. However, how tumor stroma modulates the expression of neoplastic OPN and the multifaceted roles of OPN in head and neck cancer (HNC) are unclear. In this study, we tried to investigate the bridging role of OPN between tumor stroma and cancer cells. Methods: Immunohistochemical staining and quantitative real-time PCR were used to detect OPN expression in HNC tissues, and the correlations between OPN expression and clinicopathologic features were then analyzed. We used a co-culture assay to study the modulatory role of IL-6 on OPN expression and immunoprecipitation analysis was used to determine the endogenous interaction between OPN and integrin αvβ3. Furthermore, a xenograft assay was carried out to confirm the tumor-promoting role and the potential therapeutic value of OPN in HNC. Results: We found that OPN was significantly up-regulated in HNCs, and the elevated OPN was correlated with poor prognosis. Moreover, we identified IL-6 secreted by cancer-associated fibroblasts (CAFs) as the major upstream molecule that triggers the induction of neoplastic OPN. As such, during the interaction of fibroblasts and cancer cells, the increased neoplastic OPN induced by stromal IL-6 accelerated the growth, migration and invasion of cancer cells. More importantly, we also showed that soluble OPN could promote HNC progression via the integrin αvβ3-NF-kappa B pathway, and the combination of OPN and IL-6 had a better prognostic and diagnostic performance in HNC than either molecule alone. Conclusion: Our study identified a novel modulatory role for OPN in HNC progression and further demonstrated that the combination of OPN and IL-6 might be a promising prognostic and diagnostic indicator as well as a potential cancer therapeutic target.


Identification and Confirmation of the miR-30 Family as a Potential Central Player in Tobacco-Related Head and Neck Squamous Cell Carcinoma.

  • Tingting Zhang‎ et al.
  • Frontiers in oncology‎
  • 2021‎

Constituents of tobacco that can cause DNA adduct formation and oxidative stress are implicated in the development of head and neck squamous cell carcinoma (HNSCC). However, there are few studies on the mechanism(s) that underlie tobacco-associated HNSCC. Here, we used a model in which tumors were induced in rats using 4-nitroquinoline 1-oxide (4NQO), which mimicked tobacco-related HNSCC, and analyzed the expression profiles of microRNAs and mRNAs. Our results indicated that 57 miRNAs and 474 mRNA/EST transcripts exhibited differential expression profiles between tumor and normal tongue tissues. In tumor tissue, the expression levels of rno-miR-30 family members (rno-miR-30a, rno-miR-30a-3p, rno-miR-30b-5p, rno-miR-30c, rno-miR-30d, rno-miR-30e and rno-miR-30e-3p) were only 8% to 37% of those in the control group. The GO terms enrichment analysis of the differentially expressed miRNAs indicated that oxidation reduction was the most enriched process. Low expression of miR-30 family members in human HNSCC cell lines and tissues was validated by qPCR. The results revealed that the expression of miR-30b-5p and miR-30e-5p was significantly decreased in the TCGA HNSCC dataset and validation datasets, and this decrease in expression further distinguishes HNSCC associated with tobacco use from other subtypes of HNSCC. CCK8, colony formation, transwell migration and HNSCC xenograft tumor assays indicated that miR-30b-5p or miR-30e-5p inhibited proliferation, migration and invasion in vitro, and miR-30b-5p suppressed tumor growth in vivo. Moreover, we uncovered that KRAS might be the potential target gene of miR-30e-5p or miR-30b-5p. Thus, our data clearly showed that decreased expression of miR-30e-5p or miR-30b-5p may play a crucial role in cancer development, especially that of tobacco-induced HNSCC, and may be a novel candidate biomarker and target for this HNSCC subtype.


Loss of exosomal miR-3188 in cancer-associated fibroblasts contributes to HNC progression.

  • Xiaoning Wang‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2019‎

Head and neck cancer (HNC) is one of the most common deadly diseases worldwide. An increasing number of studies have recently focused on the malignant functions of cancer-associated fibroblasts (CAFs) in numerous cancers. However, the underlying mechanisms by which CAF-derived exosomes promote tumor progression need to be further elucidated. This study aims to determine whether the loss of specific miRNAs in CAF-derived exosomes may be involved in the malignant transformation of HNC.


A Novel Tumor Suppressor SPINK5 Serves as an Independent Prognostic Predictor for Patients with Head and Neck Squamous Cell Carcinoma.

  • Zhongjing Lv‎ et al.
  • Cancer management and research‎
  • 2020‎

In our previous study, serine protease inhibitor Kazal-type 5 (SPINK5), which encodes the product of serine protease inhibitor lymphoepithelial Kazal-type-related inhibitor (LEKTI) was found to be down-regulated in head and neck squamous cell carcinoma (HNSCC) using oligonucleotide microarrays. However, the function and clinical implications of SPINK5/LEKTI remain obscure in HNSCC.


Exosomal miR-196a derived from cancer-associated fibroblasts confers cisplatin resistance in head and neck cancer through targeting CDKN1B and ING5.

  • Xing Qin‎ et al.
  • Genome biology‎
  • 2019‎

Cisplatin resistance is a major challenge for advanced head and neck cancer (HNC). Understanding the underlying mechanisms and developing effective strategies against cisplatin resistance are highly desired in the clinic. However, how tumor stroma modulates HNC growth and chemoresistance is unclear.


Hypoxia promotes EV secretion by impairing lysosomal homeostasis in HNSCC through negative regulation of ATP6V1A by HIF-1α.

  • Xiaoning Wang‎ et al.
  • Journal of extracellular vesicles‎
  • 2023‎

Tumour cells under hypoxia tend to modulate the number and contents of extracellular vesicles (EVs) to regulate the tumour microenvironment (TME) and thus promote tumour progression. However, the mechanism of how hypoxia influences the secretion of EVs remains to be elucidated. Here, we confirm the increased production of EVs in head and neck squamous cell carcinoma (HNSCC) cells under hypoxia, where endosome-derived EVs are the main subtype affected by insufficient O2 . The accumulation of hypoxia-inducible factor-1α (HIF-1α) under hypoxia directly downregulates the expression of ATP6V1A, which is pivotal to maintain the homeostasis of lysosomes. Subsequently, impaired lysosomal degradation contributes to the reduced fusion of multivesicular bodies (MVBs) with lysosomes and enables the secretion of intraluminal vesicles (ILVs) as EVs. These findings establish a HIF-1α-regulated lysosomal dysfunction-EV release axis and provide an exquisite framework to better understand EV biogenesis.


A novel CREB5/TOP1MT axis confers cisplatin resistance through inhibiting mitochondrial apoptosis in head and neck squamous cell carcinoma.

  • Tong Tong‎ et al.
  • BMC medicine‎
  • 2022‎

Cisplatin resistance is one of the main causes of treatment failure and death in head and neck squamous cell carcinoma (HNSCC). A more comprehensive understanding of the cisplatin resistance mechanism and the development of effective treatment strategies are urgent.


Synthesis of Yellow-Fluorescent Carbon Nano-dots by Microplasma for Imaging and Photocatalytic Inactivation of Cancer Cells.

  • Xing Qin‎ et al.
  • Nanoscale research letters‎
  • 2021‎

In recent years, multifunctional nanoparticles with combined diagnostic and therapeutic functions show great promise in nanomedicine. In this study, we report the environmentally friendly synthesis of fluorescent carbon nano-dots such as carbon quantum dots (CQDs) by microplasma using o-phenylenediamine. The produced CQDs exhibited a wide absorption peaks at 380-500 nm and emitted bright yellow fluorescence with a peak at 550 nm. The CQDs were rapidly taken up by HeLa cancer cells. When excited under blue light, a bright yellow fluorescence signal and intense reactive oxygen species (ROS) were efficiently produced, enabling simultaneous fluorescent cancer cell imaging and photodynamic inactivation, with a 40% decrease in relative cell viability. Furthermore, about 98% cells were active after the incubation with 400 μg mL-1 CQDs in the dark, which revealed the excellent biocompatibility of CQDs. Hence, the newly prepared CQDs are thus demonstrated to be materials which might be effective and safe to use for in vivo bioimaging and imaging-guided cancer therapy.


Paired like homeodomain 1 and SAM and SH3 domain-containing 1 in the progression and prognosis of head and neck squamous cell carcinoma.

  • Yu Jin‎ et al.
  • The international journal of biochemistry & cell biology‎
  • 2020‎

Head and neck squamous cell carcinoma (HNSCC) is an aggressive malignancy with high morbidity and mortality rates. In spite of numerous advancements have been made in therapeutic methods, the prognosis of HNSCC patients remains poor. Therefore, investigation of crucial genes during HNSCC tumorigenesis which could be exploited as biomarkers and therapeutic targets is greatly needed. In this study, original data of four independent datasets was downloaded from the Gene Expression Omnibus database and analyzed through R language to screen out differentially expressed genes. Paired like homeodomain 1 and SAM and SH3 domain-containing 1 were selected to be further explored through multiple online databases. Quantitative real-time polymerase chain reaction analysis and immunohistochemistry assay were adopted to validate the downregulation of paired like homeodomain 1 and SAM and SH3 domain-containing 1 in HNSCC and statistical analysis indicated their close associations with patient prognosis. In vitro experiments demonstrated the inhibitory effect of paired like homeodomain 1 and SAM and SH3 domain-containing 1 on HNSCC progression. Overall, we identified the aberrant downregulation of paired like homeodomain 1 and SAM and SH3 domain-containing 1 in HNSCC and suggested the potential of utilizing them as therapeutic targets or efficient biomarkers for diagnosis and prognosis evaluation. Our findings may provide novel evidences for the development of new strategies for HNSCC treatment.


Carbon dots derived from folic acid attenuates osteoarthritis by protecting chondrocytes through NF-κB/MAPK pathway and reprogramming macrophages.

  • Yu Jin‎ et al.
  • Journal of nanobiotechnology‎
  • 2022‎

Osteoarthritis (OA) is a common joint disorder worldwide which causes great health and economic burden. However, there remains an unmet goal to develop an effective therapeutic method to prevent or delay OA. Chondrocytes, as the major cells involved in OA progression, may serve as a promising therapeutic target.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: