Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 36 papers

Increased expression and activity of matrix metalloproteinases characterize embolic cardiac myxomas.

  • Augusto Orlandi‎ et al.
  • The American journal of pathology‎
  • 2005‎

Tumor embolism occurs in 30 to 50% of all cases of cardiac myxoma, but the causes are still uncertain. Matrix metalloproteinases (MMPs) are proteolytic enzymes that degrade the extracellular matrix (ECM) and play a crucial role in plaque instability and aortic aneurysm development, in addition to cancer and heart failure. To determine whether MMP activity contributes to tumor embolism, we examined 27 left atrium-sided myxomas, 10 of which showed clinical signs of peripheral embolism. Immunohistochemistry (in all cases) and Western blotting, and in situ and in-gel zymography (in four embolic and six nonembolic consecutive tumors) demonstrated higher expression and activity of MT1-MMP, pro-MMP-2, and pro-MMP-9 in embolic myxomas, whereas pro-MMP-1, MMP-3, and TIMP-1 levels were similar to those of nonembolic tumors. Reverse transcriptase-polymerase chain reaction demonstrated that increased MMP activity was due, at least in part, to increased transcription and that TIMP-2 transcripts increased in embolic myxomas. In vitro, embolic tumor cells retained higher MT1-MMP and pro-MMP-2 levels in basal conditions and after stimulation with interleukin-1beta and interleukin-6. Increased MMP synthesis and release correlated with enhanced ECM degradation products containing glycosaminoglycan chains in embolic myxoma tissue. Our results strongly suggest that MMP overexpression may contribute to an excessive degradation of tumor ECM and increase the risk of embolism in cardiac myxomas.


Cross-talk between vascular endothelial growth factor and matrix metalloproteinases in the induction of neovascularization in vivo.

  • Quteba Ebrahem‎ et al.
  • The American journal of pathology‎
  • 2010‎

Matrix metalloproteinases (MMPs), a specialized group of enzymes capable of proteolytically degrading extracellular matrix proteins, have been postulated to play an important role in angiogenesis. It has been suggested that MMPs can regulate neovascularization using mechanisms other than simple remodeling of the capillary basement membrane. To determine the interplay between vascular endothelial growth factor (VEGF) and MMPs, we investigated the induction of angiogenesis by recombinant active MMPs and VEGF in vivo. Using a rat corneal micropocket in vivo angiogenesis assay, we observed that the active form of MMP-9 could induce neovascularization in vivo when compared with the pro- form of the enzyme as a control. This angiogenic response could be inhibited by neutralizing VEGF antibody, which suggests that MMPs acts upstream of VEGF. Additional in vitro studies using extracellular matrix loaded with radiolabeled VEGF determined that active MMPs can enzymatically release sequestered VEGF. Interestingly, in vivo angiogenesis induced by VEGF could be inhibited by MMP inhibitors, indicating that MMPs also act downstream of VEGF. In addition, inflammation plays an important role in the induction of angiogenesis mediated by both VEGF and MMPs. Our results suggest that MMPs act both upstream and downstream of VEGF and imply that potential combination therapies of VEGF and MMP inhibitors may be a useful therapeutic approach in diseases of pathological neovascularization.


Integrin alpha1beta1 regulates matrix metalloproteinases via P38 mitogen-activated protein kinase in mesangial cells: implications for Alport syndrome.

  • Dominic Cosgrove‎ et al.
  • The American journal of pathology‎
  • 2008‎

Previous work has shown that integrin alpha1-null Alport mice exhibit attenuated glomerular disease with decreased matrix accumulation and live much longer than strain-matched Alport mice. However, the mechanism underlying this observation is unknown. Here we show that glomerular gelatinase expression, specifically matrix metalloproteinase-2 (MMP-2), MMP-9, and MMP-14, was significantly elevated in both integrin alpha1-null mice and integrin alpha1-null Alport mice relative to wild-type mice; however, only MMP-9 was elevated in glomeruli of Alport mice that express integrin alpha1. Similarly, cultured mesangial cells from alpha1-null mice showed elevated expression levels of all three MMPs, whereas mesangial cells from Alport mice show elevated expression levels of only MMP-9. In both glomeruli and cultured mesangial cells isolated from integrin alpha1-null mice, activation of the p38 and ERK branches of the mitogen-activated protein kinase pathway was also observed. The use of small molecule inhibitors demonstrated that the activation of the p38, but not ERK, pathway was linked to elevated MMP-2, -9, and -14 expression levels in mesangial cells from integrin alpha1-null mice. In contrast, elevated MMP-9 levels in mesangial cells from Alport mice were linked to ERK pathway activation. Blockade of gelatinase activity using a small molecule inhibitor (BAY-12-9566) ameliorated progression of proteinuria and restored the architecture of the glomerular basement membrane in alpha1 integrin-null Alport mice, suggesting that elevated gelatinase activity exacerbates glomerular disease progression in these mice.


Interferon-γ protects first-trimester decidual cells against aberrant matrix metalloproteinases 1, 3, and 9 expression in preeclampsia.

  • Charles J Lockwood‎ et al.
  • The American journal of pathology‎
  • 2014‎

Human extravillous trophoblast (EVT) invades the decidua via integrin receptors and subsequently degrades extracellular matrix proteins. In preeclampsia (PE), shallow EVT invasion elicits incomplete spiral artery remodeling, causing reduced uteroplacental blood flow. Previous studies show that preeclamptic decidual cells, but not interstitial EVTs, display higher levels of extracellular matrix-degrading matrix metalloproteinase (MMP)-9, but not MMP-2. Herein, we extend our previous PE-related assessment of MMP-2 and MMP-9 to include MMP-1, which preferentially degrades fibrillar collagens, and MMP-3, which can initiate a local proteolytic cascade. In human first-trimester decidual cells incubated with estradiol, tumor necrosis factor-α (TNF-α) significantly enhanced MMP-1, MMP-3, and MMP-9 mRNA and protein levels and activity measured by real-time quantitative RT-PCR, ELISA, immunoblotting, and zymography, respectively. In contrast, interferon γ (IFN-γ) reversed these effects and medroxyprogesterone acetate elicited further reversal. Immunoblotting revealed that p38 mitogen-activated protein kinase signaling mediated TNF-α enhancement of MMP-1, MMP-3, and MMP-9, whereas IFN-γ inhibited p38 mitogen-activated protein kinase phosphorylation. Unlike highly regulated MMP-1, MMP-3, and MMP-9, MMP-2 mRNA and protein expression was constitutive in decidual cells. Because inflammation underlies PE-associated shallow EVT invasion, these results suggest that excess macrophage-derived TNF-α augments expression of MMP-1, MMP-3, and MMP-9 in decidual cells to interfere with normal stepwise EVT invasion of the decidua. In contrast, decidual natural killer cell-derived IFN-γ reverses such TNF-α-induced MMPs to protect against PE.


Mechanotransduction of extracellular signal-regulated kinases 1 and 2 mitogen-activated protein kinase activity in smooth muscle is dependent on the extracellular matrix and regulated by matrix metalloproteinases.

  • Karen J Aitken‎ et al.
  • The American journal of pathology‎
  • 2006‎

Excessive wall stretch of distensible hollow organs in cardiovascular and urinary systems can activate matrix metalloproteinases (MMPs), thereby releasing matrix neoepitopes and growth factor ligands, leading to ERK1/2 activation. However, the role of MMPs in mechanotransduction of ERK1/2 signaling in the bladder is unknown. We examined bladders undergoing sustained distension over time, which provides a novel platform for smooth muscle mechanotransduction studies. Bladder distension ex vivo caused increased proliferation and MMP activity. Conditioned medium from distended compared with undistended bladders induced proliferation in bladder smooth muscle cells (BSMCs). When conditioned medium from distended bladders was used to proteolyze collagen type I matrices, matrices augmented BSMC proliferation, which was inhibited if bladders were distended in presence of broad-spectrum MMP inhibitors. Distension of ex vivo bladders also induced ERK1/2 phosphorylation in situ, which was dependent on MMP activity in the intact bladder. Similarly, stretching BSMCs in vitro induced increases in ERK1/2 activation and ERK1/2-dependent proliferation under discrete mechanical conditions, and distension conditioned medium itself induced MMP-dependent ERK1/2 activation in BSMCs. Overall, stretch-induced proliferation and ERK1/2 signaling in bladder tissue and BSMCs likely depend on secreted MMP activity. Identification of intermediaries between MMPs and ERK1/2 may elaborate novel mechanisms underlying mechanotransduction in bladder smooth muscle.


Cathepsin H-Mediated Degradation of HDAC4 for Matrix Metalloproteinase Expression in Hepatic Stellate Cells: Implications of Epigenetic Suppression of Matrix Metalloproteinases in Fibrosis through Stabilization of Class IIa Histone Deacetylases.

  • Zemin Yang‎ et al.
  • The American journal of pathology‎
  • 2017‎

In three-dimensional extracellular matrix, mesenchymal cells including hepatic stellate cells (HSCs) gain the ability to express matrix metalloproteinases (MMPs) on injury signals. In contrast, in myofibroblastic HSCs in fibrotic liver, many MMP genes are silenced into an epigenetically nonpermissive state. The mechanism by which the three-dimensional extracellular matrix confers the MMP genes into an epigenetically permissive state has not been well characterized. In continuation of previous work, we show here that the up-regulation of MMP genes is mediated through degradation of class IIa histone deacetylases (HDACs) by certain cysteine cathepsins (Cts). In three-dimensional extracellular matrix culture, CtsH, among other cysteine cathepsins, was up-regulated and localized as puncta in the nuclear and cytoplasmic compartments in a complex with HDAC4 for its degradation. Conversely, along with HSC trans-differentiation, CtsH and CtsL were progressively down-regulated, whereas HDAC4 was concurrently stabilized. The inhibition of cysteine cathepsins by specific proteinase inhibitors or chloroquine, which raises cellular pH, restored HDAC4. Recombinant CtsH could break down HDAC4 in the transfected cells and in vitro at acidic pH. In human cirrhotic liver, activated HSCs express high levels of class IIa HDACs but little CtsH. We propose that cysteine cathepsin-mediated degradation of class IIa HDACs plays a key role in the modulation of MMP expression/suppression and HSC functions in tissue injury and fibrosis.


Tissue inhibitor of metalloproteinases 3 regulates resolution of inflammation following acute lung injury.

  • Sean E Gill‎ et al.
  • The American journal of pathology‎
  • 2010‎

Tissue inhibitor of metalloproteinases 3 (TIMP3) inhibits not only matrix metalloproteinases but also a disintegrin and metalloproteinase domain family members and thus contributes to controlling diverse processes mediated by proteolysis. We used Timp3(-/-) mice to assess the role of this inhibitor in acute lung injury. After bleomycin-induced injury, inflammation, as indicated by the influx of neutrophils in bronchoalveolar lavage (BAL), peaked at 7 days post-injury in the wild-type mice and began to wane thereafter; however, in Timp3(-/-) mice, inflammation persisted up to 28 days. Furthermore, although the level of chemokines in BAL and lung homogenate was similar in both genotypes, BAL from Timp3(-/-) mice 7, 14, and 28 days post-injury had increased neutrophil chemotactic activity compared with wild-type BAL. At day 14, a higher percentage of apoptotic neutrophils were present in wild-type mice compared with Timp3(-/-) mice, further suggesting that TIMP3 constrains continued neutrophil influx. In addition, total matrix metalloproteinase activity was increased in lungs from Timp3(-/-) mice, and treatment of mice with a synthetic inhibitor of metalloproteinases rescued the enhanced neutrophilia phenotype. These data demonstrate that TIMP3 regulates neutrophil influx in the lung following injury through its ability to inhibit metalloproteinase activity and indicates that TIMP3 functions to promote the resolution of inflammation in the lung.


Complement activation triggers metalloproteinases release inducing cervical remodeling and preterm birth in mice.

  • Juan M Gonzalez‎ et al.
  • The American journal of pathology‎
  • 2011‎

Inflammation is frequently linked to preterm delivery (PTD). Here, we tested the hypothesis that complement activation plays a role in cervical remodeling and PTD. We studied two mouse models of inflammation-induced PTD. The first model was induced by vaginal administration of lipopolysaccharide (LPS) and the second one by administration of progesterone antagonist RU486. Increased cervical C3 deposition and macrophages infiltration and increased serum C3adesArg and C5adesArg levels were observed in both models when compared to gestational age matched controls. A significant increase in collagen degradation, matrix metalloproteinase 9 (MMP-9) activity and tissue distensibility was observed in the cervix in both models. Mice deficient in complement receptor C5a did not show increased MMP-9 activity and cervical remodeling and did not deliver preterm in response to LPS or RU486, suggesting a role for C5aR in the cervical changes that precede PTD. In vitro studies show that macrophages release MMP-9 in response to C5a. Progesterone diminished the amount of C5aR on the macrophages surface, inhibited the release of MMP-9 and prevented PTD. In addition, macrophages depletion also prevented cervical remodeling and PTD in LPS-treated mice. Our studies show that C5a-C5aR interaction is required for MMP-9 release from macrophages, and the cervical remodeling that leads to PTD. Complement inhibition and supplementation with progesterone may be good therapeutic options to prevent this serious pregnancy complication.


Matrix Metalloproteinase-28 Is a Key Contributor to Emphysema Pathogenesis.

  • Anne M Manicone‎ et al.
  • The American journal of pathology‎
  • 2017‎

Chronic obstructive pulmonary disease (COPD) comprises chronic bronchitis and emphysema, and is a leading cause of morbidity and mortality. Because tissue destruction is the prominent characteristic of emphysema, extracellular proteinases, particularly those with elastolytic ability, are often considered to be key drivers in this disease. Several human and mouse studies have implicated roles for matrix metalloproteinases (MMPs), particularly macrophage-derived proteinases, in COPD pathogenesis. MMP-28 is expressed by the pulmonary epithelium and macrophage, and we have found that it regulates macrophage recruitment and polarization. We hypothesized that MMP-28 has contributory roles in emphysema via alteration of macrophage numbers and activation. Because of the established association of emphysema pathogenesis to macrophage influx, we evaluated the inflammatory changes and lung histology of Mmp28-/- mice exposed to 3 and 6 months of cigarette smoke. At earlier time points, we found altered macrophage polarization in the smoke-exposed Mmp28-/- lung consistent with other published findings that MMP-28 regulates macrophage activation. At both 3 and 6 months, Mmp28-/- mice had blunted inflammatory responses more closely resembling nonsmoked mice, with a reduction in neutrophil recruitment and CXCL1 chemokine expression. By 6 months, Mmp28-/- mice were protected from emphysema. These results highlight a previously unrecognized role for MMP-28 in promoting chronic lung inflammation and tissue remodeling induced by cigarette smoke and highlight another potential target to modulate COPD.


Matrix metalloproteinase-9-null mice are resistant to TGF-β-induced anterior subcapsular cataract formation.

  • Anna Korol‎ et al.
  • The American journal of pathology‎
  • 2014‎

Epithelial-mesenchymal transition (EMT) is associated with fibrotic diseases in the lens, such as anterior subcapsular cataract (ASC) formation. Often mediated by transforming growth factor (TGF)-β, EMT in the lens involves the transformation of lens epithelial cells into a multilayering of myofibroblasts, which manifest as plaques beneath the lens capsule. TGF-β-induced EMT and ASC have been associated with the up-regulation of two matrix metalloproteinases (MMPs): MMP-2 and MMP-9. The current study used MMP-2 and MMP-9 knockout (KO) mice to further determine their unique roles in TGF-β-induced ASC formation. Adenoviral injection of active TGF-β1 into the anterior chamber of all wild-type and MMP-2 KO mice led to the formation of distinct ASC plaques that were positive for α-smooth muscle actin, a marker of EMT. In contrast, only a small proportion of the MMP-9 KO eyes injected with adenovirus-expressing TGF-β1 exhibited ASC plaques. Isolated lens epithelial explants from wild-type and MMP-2 KO mice that were treated with TGF-β exhibited features indicative of EMT, whereas those from MMP-9 KO mice did not acquire a mesenchymal phenotype. MMP-9 KO mice were further bred onto a TGF-β1 transgenic mouse line that exhibits severe ASC formation, but shows a resistance to ASC formation in the absence of MMP-9. These findings suggest that MMP-9 expression is more critical than MMP-2 in mediating TGF-β-induced ASC formation.


Macrophage matrix metalloproteinase-9 mediates epithelial-mesenchymal transition in vitro in murine renal tubular cells.

  • Thian Kui Tan‎ et al.
  • The American journal of pathology‎
  • 2010‎

As a rich source of pro-fibrogenic growth factors and matrix metalloproteinases (MMPs), macrophages are well-placed to play an important role in renal fibrosis. However, the exact underlying mechanisms and the extent of macrophage involvement are unclear. Tubular cell epithelial-mesenchymal transition (EMT) is an important contributor to renal fibrosis and MMPs to induction of tubular cell EMT. The aim of this study was to investigate the contribution of macrophages and MMPs to induction of tubular cell EMT. The murine C1.1 tubular epithelial cell line and primary tubular epithelial cells were cultured in activated macrophage-conditioned medium (AMCM) derived from lipopolysaccharide-activated J774 macrophages. MMP-9, but not MMP-2 activity was detected in AMCM. AMCM-induced tubular cell EMT in C1.1 cells was inhibited by broad-spectrum MMP inhibitor (GM6001), MMP-2/9 inhibitor, and in AMCM after MMP-9 removal by monoclonal Ab against MMP-9. AMCM-induced EMT in primary tubular epithelial cells was inhibited by MMP-2/9 inhibitor. MMP-9 induced tubular cell EMT in both C1.1 cells and primary tubular epithelial cells. Furthermore, MMP-9 induced tubular cell EMT in C1.1 cells to an extent similar to transforming growth factor-beta. Transforming growth factor-beta-induced tubular cell EMT in C1.1 cells was inhibited by MMP-2/9 inhibitor. Our in vitro study provides evidence that MMPs, specifically MMP-9, secreted by effector macrophages can induce tubular cell EMT and thereby contribute to renal fibrosis.


Matrix metalloproteinase inhibitor batimastat alleviates pathology and improves skeletal muscle function in dystrophin-deficient mdx mice.

  • Akhilesh Kumar‎ et al.
  • The American journal of pathology‎
  • 2010‎

Duchenne muscular dystrophy (DMD), caused by mutations in the dystrophin gene, involves severe muscle degeneration, inflammation, fibrosis, and early death in afflicted boys. Matrix metalloproteinases (MMPs) are extracellular proteases that cause tissue degradation in several disease states. In this study, we tested the hypothesis that the expression levels of various MMPs are abnormally increased and that their inhibition will ameliorate muscle pathogenesis in animal models of DMD. Our results show that the transcript levels of several MMPs are significantly up-regulated, whereas tissue inhibitors of MMPs are down-regulated, in dystrophic muscle of mdx mice. Chronic administration of batimastat (BB-94), a broad spectrum peptide inhibitor of MMPs, reduced necrosis, infiltration of macrophages, centronucleated fibers, and the expression of embryonic myosin heavy chain in skeletal muscle of mdx mice. Batimastat also reduced the expression of several inflammatory molecules and augmented the levels of sarcolemmal protein beta-dystroglycan and neuronal nitric oxide in mdx mice. In addition, muscle force production in isometric contraction was increased in batimastat-treated mdx mice compared with those treated with vehicle alone. Furthermore, inhibition of MMPs using batimastat reduced the activation of mitogen-activated protein kinases and activator protein-1 in myofibers of mdx mice. Our study provides the novel evidence that the expression of MMPs is atypically increased in DMD, that their inhibition ameliorates pathogenesis, and that batimastat could prove to be a significant candidate for DMD therapy.


Doxycycline treatment decreases morbidity and mortality of murine neurocysticercosis: evidence for reduction of apoptosis and matrix metalloproteinase activity.

  • Jorge I Alvarez‎ et al.
  • The American journal of pathology‎
  • 2009‎

Murine neurocysticercosis is a parasitic infection transmitted through the direct ingestion of Taenia solium eggs, which differentially disrupts the barriers that protect the microenvironment of the central nervous system. Among the host factors that are involved in this response, matrix metalloproteinases (MMPs) have been recently described as important players. Doxycycline is a commonly prescribed antimicrobial drug that acts as an anti-inflammatory agent with broad inhibitory properties against MMPs. In this study, we examined the effects of doxycycline treatment in a murine model of neurocysticercosis. Animals treated with doxycycline exhibited reduced morbidity and mortality throughout the course of infection. Although similar levels of leukocyte infiltration were observed with both treatment regimens, doxycycline appeared to provide improved conditions for host survival, as reduced levels of apoptosis were detected among infiltrates as well as in neurons. As an established MMP blocker, doxycycline reduced the degradation of junctional complex proteins in parenchymal vessels. In addition, doxycycline treatment was associated with an overall reduction in the expression and activity of MMPs, particularly in areas of leukocyte infiltration. These results indicate that a broad-range inhibitor of MMPs promotes host survival and suggest the potential of doxycycline as a therapeutic agent for the control of inflammatory responses associated with neurocysticercosis.


Overexpression of tumor necrosis factor-α in the lungs alters immune response, matrix remodeling, and repair and maintenance pathways.

  • Errol M Thomson‎ et al.
  • The American journal of pathology‎
  • 2012‎

Increased production of tumor necrosis factor (TNF)-α and matrix metalloproteinases (MMPs) is a feature of inflammatory lung diseases, including emphysema and fibrosis, but the divergent pathological characteristics that result indicate involvement of other processes in disease pathogenesis. Transgenic mice overexpressing TNF-α in type II alveolar epithelial cells under the control of the surfactant protein (SP)-C promoter develop pulmonary inflammation and emphysema but are resistant to induction of fibrosis by administration of bleomycin or transforming growth factor-β. To study the molecular mechanisms underlying the development of this phenotype, we used a microarray approach to characterize the pulmonary transcriptome of SP-C/TNF-α mice and wild-type littermates. Four-month-old SP-C/TNF-α mice displayed pronounced pulmonary inflammation, airspace enlargement, increased MMP-2 and MMP-9 levels, and altered expression of 2332 probes. The functional assessment of genes with increased expression revealed enrichment of inflammatory/immune responses and proteases, whereas genes involved in protease inhibition, angiogenesis, cross-linking of basement membrane proteins, and myofibroblast differentiation were predominantly decreased. Comparison with multiple lung disease models identified a set of genes unique to the SP-C/TNF-α model and revealed that lack of extracellular matrix production distinguished SP-C/TNF-α mice from fibrosis models. Activation of inflammatory and proteolytic pathways and disruption of maintenance and repair processes are central features of emphysema in this TNF-overexpression model. Impairment of myofibroblast differentiation and extracellular matrix production may underlie resistance to induction of fibrosis.


Infiltration of inflammatory cells plays an important role in matrix metalloproteinase expression and activation in the heart during sepsis.

  • Jimena Cuenca‎ et al.
  • The American journal of pathology‎
  • 2006‎

Septicemia is an emerging pathological condition involving, among other effects, refractory hypotension and heart dysfunction. Here we have investigated the contribution of resident nonmyocytic cells to heart alterations after lipopolysaccharide administration. These cells contributed to the rapid infiltration of additional inflammatory cells that enhance the onset of heart disease through the release of inflammatory mediators. Early activation of resident monocytic cells played a relevant role on the infiltration process, mainly of major histocompatibility complex class II- and CD11b-positive cells. This infiltration was significantly impaired in animals lacking the nitric-oxide synthase-2 (NOS-2) gene or after pharmacological in-hibition of NOS-2 or cylooxygenase-2, suggesting a significant contribution of nitric oxide and prostanoids to the infiltration process. Under these conditions, the expression of NOS-2 and cylooxygenase-2 in the whole organ was attenuated because cardiomyocytes failed to express these enzymes. However, cardiomyocytes expressed and activated matrix metalloproteinase-9 through mechanisms regulated, at least in part, by nitric oxide and prostaglandins in an additive way. These results directly link the inflammatory response in the heart and extracellular matrix remodeling by the matrix metalloproteinases released by the cardiomyocytes, suggesting that activation and recruitment of inflammatory cells to the heart is a major early event in cardiac dysfunction promoted by septicemia.


Matrix metalloproteinase-3 promotes early blood-spinal cord barrier disruption and hemorrhage and impairs long-term neurological recovery after spinal cord injury.

  • Jee Youn Lee‎ et al.
  • The American journal of pathology‎
  • 2014‎

After spinal cord injury (SCI), blood-spinal cord barrier (BSCB) disruption by matrix metalloproteinases (MMPs) leads to BSCB permeability and blood cell infiltration, contributing to permanent neurological disability. Herein, we report that MMP-3 plays a critical role in BSCB disruption after SCI in mice. MMP-3 was induced in infiltrated neutrophils and blood vessels after SCI, and NF-κB as a transcription factor was involved in MMP-3 expression. BSCB permeability and blood cell infiltration after injury were more reduced in Mmp3 knockout (KO) mice than in wild-type (WT) mice, which was significantly inhibited by Mmp3 siRNA or a general inhibitor of MMPs, N-isobutyl-N-(4-methoxyphenylsulfonyl)glycyl hydroxamic acid. The level of tight junction proteins, such as occludin and zonula occludens-1, which decreased after SCI, was also higher in Mmp3 KO than in WT mice. Exogenously, MMP-3 injection into the normal spinal cord also induced BSCB permeability. Furthermore, MMP-9 activation after injury was mediated by MMP-3 activation. Finally, improved functional recovery was observed in Mmp3 KO mice compared with WT mice after injury. These results demonstrated the role of MMP-3 in BSCB disruption after SCI for the first time and suggest that the regulation of MMP-3 can be considered a therapeutic target to inhibit BSCB disruption and hemorrhage, and thereby enhance functional recovery after acute SCI.


RSK1 activation promotes invasion in nodular melanoma.

  • Amel Salhi‎ et al.
  • The American journal of pathology‎
  • 2015‎

The two major melanoma histologic subtypes, superficial spreading and nodular melanomas, differ in their speed of dermal invasion but converge biologically once they invade and metastasize. Herein, we tested the hypothesis that distinct molecular alterations arising in primary melanoma cells might persist as these tumors progress to invasion and metastasis. Ribosomal protein S6 kinase, 90 kDa, polypeptide 1 (RSK1; official name RPS6KA1) was significantly hyperactivated in human melanoma lines and metastatic tissues derived from nodular compared with superficial spreading melanoma. RSK1 was constitutively phosphorylated at Ser-380 in nodular but not superficial spreading melanoma and did not directly correlate with BRAF or MEK activation. Nodular melanoma cells were more sensitive to RSK1 inhibition using siRNA and the pharmacological inhibitor BI-D1870 compared with superficial spreading cells. Gene expression microarray analyses revealed that RSK1 orchestrated a program of gene expression that promoted cell motility and invasion. Differential overexpression of the prometastatic matrix metalloproteinase 8 and tissue inhibitor of metalloproteinases 1 in metastatic nodular compared with metastatic superficial spreading melanoma was observed. Finally, using an in vivo zebrafish model, constitutive RSK1 activation increased melanoma invasion. Together, these data reveal a novel role for activated RSK1 in the progression of nodular melanoma and suggest that melanoma originating from different histologic subtypes may be biologically distinct and that these differences are maintained as the tumors invade and metastasize.


Soluble human IL-1 receptor type 2 inhibits ectopic endometrial tissue implantation and growth: identification of a novel potential target for endometriosis treatment.

  • Khaled Khoufache‎ et al.
  • The American journal of pathology‎
  • 2012‎

Endometriosis is often associated with a chronic pelvic immuno-inflammatory process, which is closely related to disease pathogenesis and major symptoms. Our studies led to the detection of a marked imbalance between IL-1 and its natural inhibitor IL-1 receptor type 2 (IL1R2) in women with endometriosis. This points to a deficiency in the local control of IL-1 that, in view of the cytokine's elevated levels and potent proinflammatory, angiogenic, and growth-promoting effects, may contribute to endometriosis development. Using an in vivo model in which human endometrial tissue was inoculated into nude mice and left to establish before any further treatment, our data showed that sIL1R2 interferes with the capability of endometrial tissue to invade, grow, disseminate, and stimulate angiogenesis into the host tissue. sIL1R2 significantly down-regulated the expression of major cell adhesion receptors (αv and β3 integrins), matrix metalloproteinases (MMP-2 and -9), and vascular endothelial cell growth factor. Interestingly, treatment with sILR2 (5 μg/kg) led to a concomitant upregulation of matrix metalloproteinases natural inhibitors (TIMP1 and TIMP2) and down-regulation of BclII, a potent anti-apoptotic protein. This creates an imbalance between pro- and anti-proteolytic and apoptotic factors and may further contribute to IL1R2 growth-inhibitory effects. This study provides evidence that sIL1R2 alters ectopic endometrial tissue growth, remodeling, and survival in vivo and may represent an interesting potential therapeutic tool.


Cartilage destruction in granulomatosis with polyangiitis (Wegener's granulomatosis) is mediated by human fibroblasts after transplantation into immunodeficient mice.

  • Nina Kesel‎ et al.
  • The American journal of pathology‎
  • 2012‎

A key feature of granulomatosis with polyangiitis (GPA; or Wegener's granulomatosis) is the granulomatous inflammation of the upper respiratory tract, which leads to the subsequent destruction of adjacent tissues. The aim of our work was to study the histopathological and cellular components of tissue destruction of human GPA tissue transplanted into immunodeficient mice. Biopsy specimens from patients with active GPA (n = 10) or sinusitis (controls, n = 6) were s.c. co-implanted with healthy allogeneic human nasal cartilage into immunodeficient pfp/rag2(-/-) mice. Transplants were examined for their destructive capability of the allografted human cartilage. In addition, nasal fibroblasts from patients with GPA (n = 8) and control healthy nasal fibroblasts (n = 5) were cultured, and cell proliferation and apoptosis were quantified. mRNA and protein levels of matrix metalloproteinases and cytokines were evaluated at baseline and after proinflammatory stimulation. GPA implants showed massive destruction of the co-implanted human cartilage, whereas cartilage destruction was only marginal in control samples. Destruction was mediated by human fibroblasts and could be inhibited by corticoid treatment. The up-regulated production of matrix metalloproteinases 1, 3, and 13 and cytokines IL-6 and IL-8 was found in vivo and in vitro. Although proliferation of isolated fibroblasts was comparable between GPA and controls, GPA samples showed a significant delay of apoptosis. The destruction of nasal cartilage in GPA is mainly mediated by fibroblasts that can be blocked by corticosteroids, and this tissue destruction is not dependent on the influx of leukocytes.


Persistent macrophage/microglial activation and myelin disruption after experimental autoimmune encephalomyelitis in tissue inhibitor of metalloproteinase-1-deficient mice.

  • Stephen J Crocker‎ et al.
  • The American journal of pathology‎
  • 2006‎

Increased leukocyte trafficking into the parenchyma during inflammatory responses in the central nervous system (CNS) is facilitated by the extracellular proteolytic activities of matrix metalloproteinases that are regulated, in part, by the endogenous tissue inhibitors of metalloproteinases (TIMPs). In experimental autoimmune encephalomyelitis (EAE), TIMP-1 gene expression is induced in astrocytes surrounding inflammatory lesions in the CNS. The physiological importance of this temporal and spatial relationship is not clear. Herein, we have addressed the functional role of TIMP-1 in a myelin oligodendrocyte glycoprotein (MOG35-55)-induced model of EAE using TIMP-1-deficient (TIMP-1-/-) C57BL/6 mice. Although CD4+ T-cell immune responses to myelin in wild-type (WT) and TIMP-1-/- mice were similar, analysis of CNS tissues from TIMP-1-/- mice after EAE revealed more severe myelin pathology than that of WT mice. This disruption of myelin was associated with both increased lymphocyte infiltration and microglial/macrophage accumulation in the brain parenchyma. These findings suggest that induction of TIMP-1 by astrocytes during EAE in WT mice represents an inherent cytoprotective response that mitigates CNS myelin injury through the regulation of both immune cell infiltration and microglial activation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: