Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 31 papers

Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases in Echinoderms: Structure and Possible Functions.

  • Igor Yu Dolmatov‎ et al.
  • Cells‎
  • 2021‎

Echinoderms are one of the most ancient groups of invertebrates. The study of their genomes has made it possible to conclude that these animals have a wide variety of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). The phylogenetic analysis shows that the MMPs and TIMPs underwent repeated duplication and active divergence after the separation of Ambulacraria (Echinodermata+Hemichordata) from the Chordata. In this regard the homology of the proteinases and their inhibitors between these groups of animals cannot be established. However, the MMPs of echinoderms and vertebrates have a similar domain structure. Echinoderm proteinases can be structurally divided into three groups-archetypal MMPs, matrilysins, and furin-activatable MMPs. Gelatinases homologous to those of vertebrates were not found in genomes of studied species and are probably absent in echinoderms. The MMPs of echinoderms possess lytic activity toward collagen type I and gelatin and play an important role in the mechanisms of development, asexual reproduction and regeneration. Echinoderms have a large number of genes encoding TIMPs and TIMP-like proteins. TIMPs of these animals, with a few exceptions, have a structure typical for this class of proteins. They contain an NTR domain and 10-12 conservatively located cysteine residues. Repeated duplication and divergence of TIMP genes of echinoderms was probably associated with an increase in the functional importance of the proteins encoded by them in the physiology of the animals.


Matrix Metalloproteinases Retain Soluble FasL-mediated Resistance to Cell Death in Fibrotic-Lung Myofibroblasts.

  • David Nareznoi‎ et al.
  • Cells‎
  • 2020‎

A prominent feature of obstructed tissue regeneration following injury in general, and fibrotic lung tissue in particular, is fibroblast proliferation and accumulation. The Fas/FasL apoptotic pathway has been shown to be involved in human idiopathic pulmonary fibrosis (IPF) and bleomycin-induced lung fibrosis in rodents. We previously showed that in normal injury repair, myofibroblasts' accumulation is followed by their decline by FasL+ T cell-induced cell death. In pathological lung fibrosis, myofibroblasts resist cell death and accumulate. Like other members of the tumor necrosis factor (TNF) family, membrane-bound FasL can be cleaved from the cell surface to generate a soluble form (sFasL). Metalloproteinases (MMPs) are known to convert the membrane-bound form of FasL to sFasL. MMP-7 knockout (KO) mice were shown to be protected from bleomycin (BLM)-induced lung fibrosis. In this study, we detected increased levels of sFasL in their blood serum, as in the lungs of patients with IPF, and IPF-lung myofibroblast culture medium. In this study, using an MMP-inhibitor, we showed that sFasL is decreased in cultures of IPF-lung myofibroblasts and BLM-treated lung myofibroblasts, and in the blood serum of MMP-7KO mice. Moreover, resistant fibrotic-lung myofibroblasts, from the lungs of humans with IPF and of BLM-treated mice, became susceptible to T-cell induced cell death in a co-culture following MMP-inhibition- vs. control-treatment or BLM-treated MMP-7KO vs. wild-type mice, respectively. sFasL may be an unrecognized mechanism for MMP-7-mediated decreased tissue regeneration following injury and the evolution of lung fibrosis.


Paradoxical Role of Matrix Metalloproteinases in Liver Injury and Regeneration after Sterile Acute Hepatic Failure.

  • Débora Moreira Alvarenga‎ et al.
  • Cells‎
  • 2018‎

Acetaminophen (APAP) poisoning is one of the leading causes of acute hepatic failure and liver transplantation is often the only lifesaving alternative. During the course of hepatocyte necrosis, an intense accumulation of neutrophils is often observed within the liver microenvironment. Despite the classic idea that neutrophil accumulation in tissues causes collateral tissue damage, there is a growing body of evidence showing that neutrophils can also orchestrate the resolution of inflammation. In this work, drug-induced liver injury was induced by oral administration of APAP and pharmacological intervention was made 12 h after this challenge. Liver injury and repair kinetics were evaluated by a novel combination of enzyme quantifications, ELISA, specific antagonists of neutrophil enzymes and confocal intravital microscopy. We have demonstrated that neutrophil infiltration is not only involved in injury amplification, but also in liver tissue repair after APAP-induced liver injury. In fact, while neutrophil depletion led to reduced hepatic necrosis during APAP poisoning, injury recovery was also delayed in neutropenic mice. The mechanisms underlying the neutrophil reparative role involved rapid degranulation and matrix metalloproteinases (MMPs) activity. Our data highlights the crucial role of neutrophils, in particular for MMPs, in the resolution phase of APAP-induced inflammatory response.


Matrix Metalloproteinases Inhibition by Doxycycline Rescues Extracellular Matrix Organization and Partly Reverts Myofibroblast Differentiation in Hypermobile Ehlers-Danlos Syndrome Dermal Fibroblasts: A Potential Therapeutic Target?

  • Nicola Chiarelli‎ et al.
  • Cells‎
  • 2021‎

Hypermobile Ehlers-Danlos syndrome (hEDS) is the most frequent type of EDS and is characterized by generalized joint hypermobility and musculoskeletal manifestations which are associated with chronic pain, and mild skin involvement along with the presence of more than a few comorbid conditions. Despite numerous research efforts, no causative gene(s) or validated biomarkers have been identified and insights into the disease-causing mechanisms remain scarce. Variability in the spectrum and severity of symptoms and progression of hEDS patients' phenotype likely depend on a combination of age, gender, lifestyle, and the probable multitude of genes involved in hEDS. However, considering the clinical overlap with other EDS forms, which lead to abnormalities in extracellular matrix (ECM), it is plausible that the mechanisms underlying hEDS pathogenesis also affect the ECM to a certain extent. Herein, we performed a series of in vitro studies on the secretome of hEDS dermal fibroblasts that revealed a matrix metalloproteinases (MMPs) dysfunction as one of the major disease drivers by causing a detrimental feedback loop of excessive ECM degradation coupled with myofibroblast differentiation. We demonstrated that doxycycline-mediated inhibition of MMPs rescues in hEDS cells a control-like ECM organization and induces a partial reversal of their myofibroblast-like features, thus offering encouraging clues for translational studies confirming MMPs as a potential therapeutic target in hEDS with the expectation to improve patients' quality of life and alleviate their disabilities.


IFN-λ Modulates the Migratory Capacity of Canine Mammary Tumor Cells via Regulation of the Expression of Matrix Metalloproteinases and Their Inhibitors.

  • Rafał Pingwara‎ et al.
  • Cells‎
  • 2021‎

Interactions between neoplastic and immune cells taking place in tumors drive cancer regulatory mechanisms both in humans and animals. IFN-λ, a potent antiviral factor, is also secreted in the tumor; however, its role in tumor development is still unclear. In our study, we investigate the influence of IFN-λ on the canine mammary tumor (CMT) cell survival and their metastatic potential in vitro. First, we examined, by Western blot, the expression of the IFN-λ receptor complex in three CMT cell lines (P114, CMT-U27 and CMT-U309). We showed that only two cell lines (P114 and CMT-U27) express both (IL-28RA and IL-10Rb) receptor subunits and respond to IFN-λ treatment by STAT phosphorylation and the expression of interferon-stimulated genes. Using MTT, crystal violet and annexin-V assays, we showed a minimal role of IFN-λ in CMT viability. However, IFN-λ administration had a contradictory effect on cell migration in the scratch test, namely, it increased P114 and decreased CMT-U27 motility. Moreover, we demonstrated that this process is related to the expression of extracellular matrix metalloproteinases and their inhibitors; furthermore, it is independent of Akt and ERK signaling pathways. To conclude, we showed that IFN-λ activity is reliant on the expression of two receptor subunits and tumor type, but further investigations are needed.


Reductions of Circulating Nitric Oxide are Followed by Hypertension during Pregnancy and Increased Activity of Matrix Metalloproteinases-2 and -9 in Rats.

  • Regina A Nascimento‎ et al.
  • Cells‎
  • 2019‎

Hypertensive pregnancy has been associated with reduced nitric oxide (NO), bioavailability, and increased activity of matrix metalloproteinases (MMPs). However, it is unclear if MMPs activation is regulated by NO during pregnancy. To this end, we examined activity of MMP-2 and MMP-9 in plasma, placenta, uterus and aorta, NO bioavailability, oxidative stress, systolic blood pressure (SBP), and fetal-placental development at the early, middle, and late pregnancy stages in normotensive and Nω-Nitro-L-arginine methyl-ester (L-NAME)-induced hypertensive pregnancy in rats. Reduced MMP-2 activity in uterus, placenta, and aorta and reduced MMP-9 activity in plasma and placenta with concomitant increased NO levels were found in normotensive pregnant rats. By contrast, increased MMP-2 activity in uterus, placenta, and aorta, and increased MMP-9 activity in plasma and placenta with concomitant reduced NO levels were observed in hypertensive pregnant rats. Also, elevated oxidative stress was displayed by hypertensive pregnant rats at the middle and late stages. These findings in the L-NAME-treated pregnant rats were also followed by increases in SBP and associated with fetal growth restrictions at the middle and late pregnancy stages. We concluded that NO bioavailability may regulate MMPs activation during normal and hypertensive pregnancy.


Sub-Cellular Localization of Metalloproteinases in Megakaryocytes.

  • Alessandro Malara‎ et al.
  • Cells‎
  • 2018‎

Metalloproteinases (MMPs) are zinc-dependent endopeptidases that play essential roles as the mediator of matrix degradation and remodeling during organogenesis, wound healing and angiogenesis. Although MMPs were originally identified as matrixin proteases that act in the extracellular matrix, more recent research has identified members of the MMP family in unusual locations within the cells, exerting distinct functions in addition to their established role as extracellular proteases. During thrombopoiesis, megakaryocytes (Mks) sort MMPs to nascent platelets through pseudopodial-like structure known as proplatelets. Previous studies identified gelatinases, MMP-2 and MMP-9, as a novel regulator system of Mks and the platelet function. In this work we have exploited a sensitive immunoassay to detect and quantify multiple MMP proteins and their localization, in conditioned medium and sub-cellular fractions of primary human CD34⁺-derived Mks. We provide evidence that Mks express other MMPs in addition to gelatinases MMP-2 and MMP-9, peculiar isoforms of MMP-9 and MMPs with a novel nuclear compartmentalization.


ΕGFR/ERβ-Mediated Cell Morphology and Invasion Capacity Are Associated with Matrix Culture Substrates in Breast Cancer.

  • Konstantina Kyriakopoulou‎ et al.
  • Cells‎
  • 2020‎

Breast cancer accounts for almost one in four cancer diagnoses in women. Studies in breast cancer patients have identified several molecular markers, indicators of aggressiveness, which help toward more individual therapeutic approaches. In triple-negative breast cancer (TNBC), epidermal growth factor receptor (EGFR) overexpression is associated with increased metastatic potential and worst survival rates. Specifically, abnormal EGFR activation leads to altered matrix metalloproteinases' (MMPs) expression and, hence, extracellular matrix (ECM) degradation, resulting in induced migration and invasion. The use of matrix substrates for cell culture gives the opportunity to mimic the natural growth conditions of the cells and their microenvironment, as well as cell-cell and cell-matrix interactions. The aim of this study was to evaluate the impact of EGFR inhibition, estrogen receptor beta (ERβ) and different matrix substrates [type I collagen and fibronectin (FN)] on the functional properties, expression of MMPs and cell morphology of ERβ-positive TNBC cells and shERβ ones. Our results highlight EGFR as a crucial regulator of the expression and activity levels of MMPs, while ERβ emerges as a mediator of MMP7 and MT1-MMP expression. In addition, the EGFR/ERβ axis impacts the adhesion and invasion potential of breast cancer cells on collagen type I. Images obtained by scanning electron microscope (SEM) from cultures on the different matrix substrates revealed novel observations regarding various structures of breast cancer cells (filopodia, extravesicles, tunneling nanotubes, etc.). Moreover, the significant contribution of EGFR and ERβ in the morphological characteristics of these cells is also demonstrated, hence highlighting the possibility of dual pharmacological targeting.


Dynamic Expression of Membrane Type 1-Matrix Metalloproteinase (Mt1-mmp/Mmp14) in the Mouse Embryo.

  • Emma Muñoz-Sáez‎ et al.
  • Cells‎
  • 2021‎

MT1-MMP/MMP14 belongs to a subgroup of the matrix metalloproteinases family that presents a transmembrane domain, with a cytosolic tail and the catalytic site exposed to the extracellular space. Deficient mice for this enzyme result in early postnatal death and display severe defects in skeletal, muscle and lung development. By using a transgenic line expressing the LacZ reporter under the control of the endogenous Mt1-mmp promoter, we reported a dynamic spatiotemporal expression pattern for Mt1-mmp from early embryonic to perinatal stages during cardiovascular development and brain formation. Thus, Mt1-mmp shows expression in the endocardium of the heart and the truncus arteriosus by E8.5, and is also strongly detected during vascular system development as well as in endothelial cells. In the brain, LacZ reporter expression was detected in the olfactory bulb, the rostral cerebral cortex and the caudal mesencephalic tectum. LacZ-positive cells were observed in neural progenitors of the spinal cord, neural crest cells and the intersomitic region. In the limb, Mt1-mmp expression was restricted to blood vessels, cartilage primordium and muscles. Detection of the enzyme was confirmed by Western blot and immunohistochemical analysis. We suggest novel functions for this metalloproteinase in angiogenesis, endocardial formation and vascularization during organogenesis. Moreover, Mt1-mmp expression revealed that the enzyme may contribute to heart, muscle and brain throughout development.


Physioxia Has a Beneficial Effect on Cartilage Matrix Production in Interleukin-1 Beta-Inhibited Mesenchymal Stem Cell Chondrogenesis.

  • Girish Pattappa‎ et al.
  • Cells‎
  • 2019‎

Osteoarthritis (OA) is a degenerative condition that involves the production of inflammatory cytokines (e.g., interleukin-1β (IL-1β), tumour necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6)) that stimulate degradative enzymes, matrix metalloproteinases (MMPs) and aggrecanases (ADAMTS) resulting in articular cartilage breakdown. The presence of interleukin-1β (IL-1β) is one reason for poor clinical outcomes in current cell-based tissue engineering strategies for treating focal early osteoarthritic defects. Mesenchymal stem cells (MSCs) are a potential cell source for articular cartilage regeneration, although IL-1β has been shown to inhibit in vitro chondrogenesis. In vivo, articular chondrocytes reside under a low oxygen environment between 2-5% oxygen (physioxia) and have been shown to enhance in vitro MSC chondrogenic matrix content with reduced hypertrophic marker expression under these conditions. The present investigation sought to understand the effect of physioxia on IL-1β inhibited MSC chondrogenesis. MSCs expanded under physioxic (2% oxygen) and hyperoxic (20%) conditions, then chondrogenically differentiated as pellets in the presence of TGF-β1 and either 0.1 or 0.5 ng/mL IL-1β. Results showed that there were donor variations in response to physioxic culture based on intrinsic GAG content under hyperoxia. In physioxia responsive donors, MSC chondrogenesis significantly increased GAG and collagen II content, whilst hypertrophic markers were reduced compared with hyperoxia. In the presence of IL-1β, these donors showed a significant increase in cartilage matrix gene expression and GAG content relative to hyperoxic conditions. In contrast, a set of MSC donors were unresponsive to physioxia and showed no significant increase in matrix production independent of IL-1β presence. Thus, physioxia has a beneficial effect on MSC cartilage matrix production in responsive donors with or without IL-1β application. The mechanisms controlling the MSC chondrogenic response in both physioxia responsive and unresponsive donors are to be elucidated in future investigations.


Tumor⁻Stroma Cross-Talk in Human Pancreatic Ductal Adenocarcinoma: A Focus on the Effect of the Extracellular Matrix on Tumor Cell Phenotype and Invasive Potential.

  • Patrizia Procacci‎ et al.
  • Cells‎
  • 2018‎

The extracellular matrix (ECM) in the tumor microenvironment modulates the cancer cell phenotype, especially in pancreatic ductal adenocarcinoma (PDAC), a tumor characterized by an intense desmoplastic reaction. Because the epithelial-to-mesenchymal transition (EMT), a process that provides cancer cells with a metastatic phenotype, plays an important role in PDAC progression, the authors aimed to explore in vitro the interactions between human PDAC cells and ECM components of the PDAC microenvironment, focusing on the expression of EMT markers and matrix metalloproteinases (MMPs) that are able to digest the basement membrane during tumor invasion. EMT markers and the invasive potential of HPAF-II, HPAC, and PL45 cells grown on different ECM substrates (fibronectin, laminin, and collagen) were analyzed. While N-cadherin, αSMA, and type I collagen were not significantly affected by ECM components, the E-cadherin/β-catenin complex was highly expressed in all the experimental conditions, and E-cadherin was upregulated by collagen in PL45 cells. Cell migration was unaffected by fibronectin and delayed by laminin. In contrast, collagen significantly stimulated cell migration and the secretion of MMPs. This study's results showed that ECM components impacted cell migration and invasive potential differently. Collagen exerted a more evident effect, providing new insights into the understanding of the intricate interplay between ECM molecules and cancer cells, in order to find novel therapeutic targets for PDAC treatment.


Protein S100-A7 Derived from Digested Dentin Is a Critical Molecule for Dentin Pulp Regeneration.

  • Shungo Komichi‎ et al.
  • Cells‎
  • 2019‎

Dentin consists of inorganic hard tissue and organic dentin matrix components (DMCs). Various kinds of bioactive molecules are included in DMCs and some of them can be released after digestion by endogenous matrix metalloproteinases (MMPs) in the caries region. Digested DMCs induced by MMP20 have been reported to promote pulpal wound healing processes, but the released critical molecules responsible for this phenomenon are unclear. Here, we identified protein S100-A7 as a critical molecule for pulpal healing in digested DMCs by comprehensive proteomic approaches and following pulp capping experiments in rat molars. In addition, immunohistochemical results indicated the specific distribution of S100-A7 and receptor for advanced glycation end-products (RAGE) as receptor for S100-A7 in the early stage of the pulpal healing process, and following accumulation of CD146-positive stem cells in wounded pulp. Our findings indicate that protein S100-A7 released from dentin by MMP20 might play a key role in dentin pulp regeneration.


Global Responses of Il-1β-Primed 3D Tendon Constructs to Treatment with Pulsed Electromagnetic Fields.

  • Renate Gehwolf‎ et al.
  • Cells‎
  • 2019‎

Tendinopathy is accompanied by a cascade of inflammatory events promoting tendon degeneration. Among various cytokines, interleukin-1β plays a central role in driving catabolic processes, ultimately resulting in the activation of matrix metalloproteinases and a diminished collagen synthesis, both of which promote tendon extracellular matrix degradation. Pulsed electromagnetic field (PEMF) therapy is often used for pain management, osteoarthritis, and delayed wound healing. In vitro PEMF treatment of tendon-derived cells was shown to modulate pro-inflammatory cytokines, potentially limiting their catabolic effects. However, our understanding of the underlying cellular and molecular mechanisms remains limited. We therefore investigated the transcriptome-wide responses of Il-1β-primed rat Achilles tendon cell-derived 3D tendon-like constructs to high-energy PEMF treatment. RNASeq analysis and gene ontology assignment revealed various biological processes to be affected by PEMF, including extracellular matrix remodeling and negative regulation of apoptosis. Further, we show that members of the cytoprotective Il-6/gp130 family and the Il-1β decoy receptor Il1r2 are positively regulated upon PEMF exposure. In conclusion, our results provide fundamental mechanistic insight into the cellular and molecular mode of action of PEMF on tendon cells and can help to optimize treatment protocols for the non-invasive therapy of tendinopathies.


Myeloid Krüppel-Like Factor 2 Critically Regulates K/BxN Serum-Induced Arthritis.

  • Manjusri Das‎ et al.
  • Cells‎
  • 2019‎

Rheumatoid arthritis (RA) is an immune-mediated inflammatory disease, and Krüppel-like factor 2 (KLF2) regulates immune cell activation and function. Herein, we show that in our experiments 50% global deficiency of KLF2 significantly elevated arthritic inflammation and pathogenesis, osteoclastic differentiation, matrix metalloproteinases (MMPs), and inflammatory cytokines in K/BxN serum-induced mice. The severities of RA pathogenesis, as well as the causative and resultant cellular and molecular factors, were further confirmed in monocyte-specific KLF2 deficient mice. In addition, induction of RA resulted in a decreased level of KLF2 in monocytes isolated from both mice and humans along with higher migration of activated monocytes to the RA sites in humans. Mechanistically, overexpression of KLF2 decreased the level of MMP9; conversely, knockdown of KLF2 increased MMP9 in monocytes along with enrichment of active histone marks and histone acetyltransferases on the MMP9 promoter region. These findings define the critical regulatory role of myeloid KLF2 in RA pathogenesis.


Infrapatellar Fat Pad Modulates Osteoarthritis-Associated Cytokine and MMP Expression in Human Articular Chondrocytes.

  • Ewa Wisniewska‎ et al.
  • Cells‎
  • 2023‎

Osteoarthritis (OA) most frequently affects the knee joint and is associated with an elevated expression of cytokines and extracellular cartilage matrix (ECM), degrading enzymes such as matrix metalloproteinases (MMPs). Differences in gene expression of the intra-articularly located infrapatellar fat pad (IPFP) and other fatty tissue suggest its autonomous function, yet its role in OA pathogenesis remains unknown. Human IPFPs and articular cartilage were collected from OA patients undergoing total knee arthroplasty, and biopsies from the IPFP of healthy patients harvested during knee arthroscopy served as controls (CO). Isolated chondrocytes were co-cultured with either osteoarthritic (OA) or CO-IPFPs in a transwell system. Chondrocyte expression of MMP1, -3, -13, type 1 and 2 collagens, interleukin IL1β, IL6, IL10, and tumor necrosis factor TNFα was analyzed by RTD-PCR at day 0 and day 2, and TNFα secretion was analyzed by ELISA. The cytokine release in IPFPs was assessed by an array. Results: Both IPFPs (CO, OA) significantly reduced the expression of type 2 collagen and TNFα in chondrocytes. On the other hand, only CO-IPFP suppressed the expression of type 1 collagen and significantly induced the MMP13 expression. On the contrary, IL1β and IL6 were significantly induced when exposed to OA-IPFP. Conclusions: The partial loss of the suppressive effect on type 1 collagen gene expression found for OA-IPFP shows the pathological remodeling and dedifferentiation potential of the OA-IPFP on the chondrocytes. However, the significant suppression of TNFα implies that the OA- and CO-IPFP could also exhibit a protective role in the knee joint, preventing the progress of inflammation.


SQSTM1/p62 Knockout by Using the CRISPR/Cas9 System Inhibits Migration and Invasion of Hepatocellular Carcinoma.

  • Jinghua Lu‎ et al.
  • Cells‎
  • 2023‎

Migration and invasion play crucial roles in the progression of hepatocellular carcinoma (HCC), but the underlying mechanisms are not clear. Analysis of clinical samples indicates that SQSTM1/p62 is highly expressed in HCC and seriously affects the prognosis of patients. Subsequently, we showed that SQSTM1/p62 knockout using the CRISPR/Cas9 system led to impaired migration and invasion of HCC, upregulated Keap1, and promoted the inhibitory effect of Keap1 on Nrf2. Then, the inactivation of Nrf2 inhibited the expression of matrix metalloproteinases (MMPs), thus attenuating the migration and invasion of HCC. We also found that SQSTM1/p62 knockout significantly inhibited migration and invasion in a lung metastasis model of nude mice with HCC. Furthermore, we found that cisplatin not only significantly inhibited the expression of SQSTM1/p62 but also slowed down the migration and invasion of HCC, while the inflammatory microenvironment accelerated the migration and invasion of HCC. These results suggest for the first time that SQSTM1/p62 knockout inhibits the migration and invasion of HCC through the Keap1/Nrf2/MMP2 signaling pathway. SQSTM1/p62 may be developed into a key drug target to regulate the migration and invasion of HCC cells.


Irisin Recovers Osteoarthritic Chondrocytes In Vitro.

  • Gianluca Vadalà‎ et al.
  • Cells‎
  • 2020‎

Physical exercise favors weight loss and ameliorates articular pain and function in patients suffering from osteoarthritis. Irisin, a myokine released upon muscle contraction, has demonstrated to yield anabolic effects on different cell types. This study aimed to investigate the effect of irisin on human osteoarthritic chondrocytes (hOAC) in vitro. Our hypothesis was that irisin would improve hOAC metabolism and proliferation. Cells were cultured in growing media and then exposed to either phosphate-buffered saline (control group) or human recombinant irisin (experimental group). Cell proliferation, glycosaminoglycan content, type II/X collagen gene expression and protein quantification as well as p38/extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK), protein kinase B (Akt), c-Jun N-terminal kinase (JNK), and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) involvement were evaluated. Furthermore, gene expression of interleukin (IL)-1 and -6, matrix metalloproteinase (MMP)-1 and -13, inducible nitric oxide synthase (iNOS), and tissue inhibitor of matrix metalloproteinases (TIMP)-1 and -3 were investigated following irisin exposure. Irisin increased hOAC cell content and both type II collagen gene expression and protein levels, while decreased type X collagen gene expression and protein levels. Moreover, irisin decreased IL-1, IL-6, MMP-1, MMP-13 and iNOS gene expression, while increased TIMP-1 and TIMP-3 levels. These effects seemed to be mediated by inhibition of p38, Akt, JNK and NFκB signaling pathways. The present study suggested that irisin may stimulate hOAC proliferation and anabolism inhibiting catabolism through p38, Akt, JNK, and NFκB inactivation in vitro, demonstrating the existence of a cross-talk between muscle and cartilage.


MDM2 Overexpression Modulates the Angiogenesis-Related Gene Expression Profile of Prostate Cancer Cells.

  • Thiagarajan Venkatesan‎ et al.
  • Cells‎
  • 2018‎

The Murine Double Minute 2 (MDM2) amplification or overexpression has been found in many tumors with high metastatic and angiogenic ability. Our experiments were designed to explore the impact of MDM2 overexpression, specifically on the levels of angiogenesis-related genes, which can also play a major role in tumor propagation and increase its metastatic potential. In the present study, we have used the human angiogenesis RT² profiler PCR array to compare the gene expression profile between LNCaP and LNCaP-MST (MDM2 transfected) prostate cancer cells, along with LNCaP-MST cells treated with Nutlin-3, an MDM2 specific inhibitor. As a result of the overexpression of MDM2 gene in LNCaP-MST (10.3-fold), Thrombospondin 1 (THBS1), Tumor necrosis factor alpha (TNF-α) and Matrix metallopeptidase 9 (MMP9) were also found to be significantly up-regulated while genes such as Epiregulin (EREG), Tissue inhibitor of metalloproteinases 1 (TIMP1) were down-regulated. Also, we determined the total MMP activity and MMP9 expression in LNCaP, LNCaP-MST and SJSA-1 cells. Our results indicated that MDM2 level is positively correlated with MMP activity and MMP9 secretion. Our findings offer strong supporting evidence that MDM2 can impact growth and metastatic potential of cancer cells through tilting the balance towards pro-angiogenic mechanisms.


High Glucose and Advanced Glycation End Products Induce CD147-Mediated MMP Activity in Human Adipocytes.

  • Abeer M Mahmoud‎ et al.
  • Cells‎
  • 2021‎

Basigin (CD147) is a transmembrane glycoprotein that regulates several physiological processes, including the production and activity of matrix metalloproteinases (MMPs). The activity of CD147 depends mainly on its glycosylation, which varies among pathophysiological conditions. However, it is unknown whether CD147 activity or its function in MMP regulation are affected by the diabetic environment, which is characterized by high glucose (HG) levels and an excess of glycation end products (AGEs). In this study, we investigated the effect of HG and AGEs on CD147 expression in human adipocytes. We also examined the mediating role of nuclear factor kappa B (NFκB) and receptor of AGE (RAGE) to this effect. Our findings show that carboxymethyl lysine and HG increased CD147 expression and glycosylation, which was accompanied by increases in MMP2 and MMP9 expression and activity, as well as upregulations of the N-acetylglucosaminyltransferase, MGAT5. These effects were abolished by NFκB and RAGE inhibition, CD147 gene silencing, and by the glycosylation inhibitor, tunicamycin. In conclusion, the current findings indicate that AGEs and HG induce CD147 expression and glycosylation in adipocytes, with possible mediation by NFκB and RAGE. One of the critical outcomes of this pathway is augmented MMP activity known to contribute to cardiovascular complications in diabetes.


Insights into Early-Pregnancy Mechanisms: Mast Cells and Chymase CMA1 Shape the Phenotype and Modulate the Functionality of Human Trophoblast Cells, Vascular Smooth-Muscle Cells and Endothelial Cells.

  • Ningjuan Zhang‎ et al.
  • Cells‎
  • 2022‎

Spiral-artery (SA) remodeling is a fundamental process during pregnancy that involves the action of cells of the initial vessel, such as vascular smooth-muscle cells (VSMCs) and endothelial cells, but also maternal immune cells and fetal extravillous trophoblast cells (EVTs). Mast cells (MCs), and specifically chymase-expressing cells, have been identified as key to a sufficient SA-remodeling process in vivo. However, the mechanisms are still unclear. The purpose of this study is to evaluate the effects of the MC line HMC-1 and recombinant human chymase (rhuCMA1) on human primary uterine vascular smooth-muscle cells (HUtSMCs), a human trophoblast cell line (HTR8/SV-neo), and human umbilical-vein endothelial cells (HUVEC) in vitro. Both HMC-1 and rhuCMA1 stimulated migration, proliferation, and changed protein expression in HUtSMCs. HMC-1 increased proliferation, migration, and changed gene expression of HTR8/SVneo cells, while rhuCMA treatment led to increased migration and decreased expression of tissue inhibitors of matrix metalloproteinases. Additionally, rhuCMA1 enhanced endothelial-cell-tube formation. Collectively, we identified possible mechanisms by which MCs/rhuCMA1 promote SA remodeling. Our findings are relevant to the understanding of this crucial step in pregnancy and thus of the dysregulated pathways that can lead to pregnancy complications such as fetal growth restriction and preeclampsia.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: