Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 12 papers out of 12 papers

Granulocyte-macrophage colony-stimulating factor is a key mediator in experimental osteoarthritis pain and disease development.

  • Andrew D Cook‎ et al.
  • Arthritis research & therapy‎
  • 2012‎

Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been shown to be important in the development of inflammatory models of rheumatoid arthritis and there is encouraging data that its blockade may have clinical relevance in patients with rheumatoid arthritis. The aims of the current study were to determine whether GM-CSF may also be important for disease and pain development in a model of osteoarthritis.


Granulocyte macrophage colony-stimulating factor receptor α expression and its targeting in antigen-induced arthritis and inflammation.

  • Andrew D Cook‎ et al.
  • Arthritis research & therapy‎
  • 2016‎

Blockade of granulocyte macrophage colony-stimulating factor (GM-CSF) and its receptor (GM-CSFRα) is being successfully tested in trials in rheumatoid arthritis (RA) with clinical results equivalent to those found with neutralization of the current therapeutic targets, TNF and IL-6. To explore further the role of GM-CSF as a pro-inflammatory cytokine, we examined the effect of anti-GM-CSFRα neutralization on myeloid cell populations in antigen-driven arthritis and inflammation models and also compared its effect with that of anti-TNF and anti-IL-6.


Inhibition of purinergic P2X receptor 7 (P2X7R) decreases granulocyte-macrophage colony-stimulating factor (GM-CSF) expression in U251 glioblastoma cells.

  • Matthew Drill‎ et al.
  • Scientific reports‎
  • 2020‎

Glioblastoma is the most aggressive form of primary brain cancer, with a median survival of 12-15 months. The P2X receptor 7 (P2X7R) is upregulated in glioblastoma and is associated with increased tumor cell proliferation. The cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) is also upregulated in glioblastoma and has been shown to have both pro- and anti-tumor functions. This study investigates the potential mechanism linking P2X7R and GM-CSF in the U251 glioblastoma cell line and the therapeutic potential of P2X7R antagonism in this setting. P2X7R protein and mRNA was demonstrated to be expressed in the U251 cell line as assessed by immunocytochemistry and qPCR. Its channel function was intact as demonstrated by live cell confocal imaging using a calcium indicator Fluo-4 AM. Inhibition of P2X7R using antagonist AZ10606120, decreased both GM-CSF mRNA (P < 0.05) and protein (P < 0.01) measured by qPCR and ELISA respectively. Neutralization of GM-CSF with an anti-GM-CSF antibody did not alter U251 cell proliferation, however, P2X7R antagonism with AZ10606120 significantly reduced U251 glioblastoma cell numbers (P < 0.01). This study describes a novel link between P2X7R activity and GM-CSF expression in a human glioblastoma cell line and highlights the potential therapeutic benefit of P2X7R inhibition with AZ10606120 in glioblastoma.


Type I interferon antagonism of the JMJD3-IRF4 pathway modulates macrophage activation and polarization.

  • Kevin Ming-Chin Lee‎ et al.
  • Cell reports‎
  • 2022‎

Metabolic adaptations can directly influence the scope and scale of macrophage activation and polarization. Here we explore the impact of type I interferon (IFNβ) on macrophage metabolism and its broader impact on cytokine signaling pathways. We find that IFNβ simultaneously increased the expression of immune-responsive gene 1 and itaconate production while inhibiting isocitrate dehydrogenase activity and restricting α-ketoglutarate accumulation. IFNβ also increased the flux of glutamine-derived carbon into the tricarboxylic acid cycle to boost succinate levels. Combined, we identify that IFNβ controls the cellular α-ketoglutarate/succinate ratio. We show that by lowering the α-ketoglutarate/succinate ratio, IFNβ potently blocks the JMJD3-IRF4-dependent pathway in GM-CSF and IL-4 activated macrophages. The suppressive effects of IFNβ on JMJD3-IRF4-dependent responses, including M2 polarization and GM-CSF-induced inflammatory pain, were reversed by supplementation with α-ketoglutarate. These results reveal that IFNβ modulates macrophage activation and polarization through control of the cellular α-ketoglutarate/succinate ratio.


Phosphatidylinostitol-3 kinase and phospholipase C enhance CSF-1-dependent macrophage survival by controlling glucose uptake.

  • Margaret Chang‎ et al.
  • Cellular signalling‎
  • 2009‎

Colony stimulating factor-1 (CSF-1)-dependent macrophages play crucial roles in the development and progression of several pathological conditions including atherosclerosis and breast cancer metastasis. Macrophages in both of these pathologies take up increased amounts of glucose. Since we had previously shown that CSF-1 stimulates glucose uptake by macrophages, we have now investigated whether glucose metabolism is required for the survival of CSF-1-dependent macrophages as well as examined the mechanism by which CSF-1 stimulates glucose uptake. Importantly, we found that CSF-1-induced macrophage survival required metabolism of the glucose taken up in response to CSF-1 stimulation. Kinetic studies showed that CSF-1 stimulated an increase in the number of glucose transporters at the plasma membrane, including Glut1. The uptake of glucose induced by CSF-1 required intact PI3K and PLC signalling pathways, as well as the downstream effectors Akt and PKC, together with a dynamic actin cytoskeleton. Expression of constitutively active Akt partially restored glucose uptake and macrophage survival in the absence of CSF-1, suggesting that Akt is necessary but not sufficient for optimal glucose uptake and macrophage survival. Taken together, these results suggest that CSF-1 regulates macrophage survival, in part, by stimulating glucose uptake via Glut1, and PI3K and PLC signalling pathways.


GM-CSF-based treatments in COVID-19: reconciling opposing therapeutic approaches.

  • Frederick M Lang‎ et al.
  • Nature reviews. Immunology‎
  • 2020‎

Therapeutics against coronavirus disease 2019 (COVID-19) are urgently needed. Granulocyte-macrophage colony-stimulating factor (GM-CSF), a myelopoietic growth factor and pro-inflammatory cytokine, plays a critical role in alveolar macrophage homeostasis, lung inflammation and immunological disease. Both administration and inhibition of GM-CSF are currently being therapeutically tested in COVID-19 clinical trials. This Perspective discusses the pleiotropic biology of GM-CSF and the scientific merits behind these contrasting approaches.


CCL17 blockade as a therapy for osteoarthritis pain and disease.

  • Ming-Chin Lee‎ et al.
  • Arthritis research & therapy‎
  • 2018‎

Granulocyte macrophage-colony stimulating factor (GM-CSF) has been implicated in the pathogenesis of a number of inflammatory diseases and in osteoarthritis (OA). We identified previously a new GM-CSF→Jmjd3→interferon regulatory factor 4 (IRF4)→chemokine (c-c motif) ligand 17 (CCL17) pathway, which is important for the development of inflammatory arthritis pain and disease. Tumour necrosis factor (TNF) can also be linked with this pathway. Here we investigated the involvement of the pathway in OA pain and disease development using the GM-CSF-dependent collagenase-induced OA (CiOA) model.


IL-23 in arthritic and inflammatory pain development in mice.

  • Kevin M-C Lee‎ et al.
  • Arthritis research & therapy‎
  • 2020‎

The cytokine, interleukin-23 (IL-23), can be critical for the progression of inflammatory diseases, including arthritis, and is often associated with T lymphocyte biology. We previously showed that certain lymphocyte-independent, inflammatory arthritis and pain models have a similar requirement for tumour necrosis factor (TNF), granulocyte macrophage-colony stimulating factor (GM-CSF), and C-C motif ligand 17 (CCL17). Given this correlation in cytokine requirements, we explored whether IL-23 might interact with this cytokine cluster in the control of arthritic and inflammatory pain.


GM-CSF-Dependent Inflammatory Pathways.

  • John A Hamilton‎
  • Frontiers in immunology‎
  • 2019‎

Pre-clinical models and clinical trials demonstrate that targeting the action of the cytokine, granulocyte macrophage-colony stimulating factor (GM-CSF), can be efficacious in inflammation/autoimmunity reinforcing the importance of understanding how GM-CSF functions; a significant GM-CSF-responding cell in this context is likely to be the monocyte. This article summarizes critically the literature on the downstream cellular pathways regulating GM-CSF interaction with monocytes (and macrophages), highlighting some contentious issues, and conclusions surrounding this biology. It also suggests future directions which could be undertaken so as to more fully understand this aspect of GM-CSF biology. Given the focus of this collection of articles on monocytes, the following discussion in general will be limited to this population or to its more mature progeny, the macrophage, even though GM-CSF biology is broader than this.


M-CSF induces the stable interaction of cFms with alphaVbeta3 integrin in osteoclasts.

  • Caryn L Elsegood‎ et al.
  • The international journal of biochemistry & cell biology‎
  • 2006‎

The macrophage colony stimulating factor receptor (cFms) and alpha(V)beta(3) integrin are both abundantly expressed and play critical roles in the differentiation, survival and migration of osteoclasts. We have previously demonstrated that cross-talk between cFms- and alpha(V)beta(3)-mediated signaling pathways regulated the cytoskeletal organization required for osteoclast migration. To investigate the nature of interaction between the two receptors, we sequentially used anion-exchange chromatography and immunoprecipitation to purify alpha(V)beta(3)-associated protein complexes. We have demonstrated that cFms stably associated with alpha(V)beta(3) in osteoclasts during adhesion, and that the association was induced by macrophage colony stimulating factor (M-CSF) stimulation. However, the kinetics of association of alpha(V)beta(3) and cFms did not correlate with the kinetics of tyrosine phosphorylation of cFms. Instead, maximally observed alpha(V)beta(3)/cFms association was after the peak of cFms tyrosine phosphorylation and correlated inversely with the total amount of cFms remaining. Furthermore, the complex containing cFms and alpha(V)beta(3) also contained a number of other signaling molecules including Pyk2, p130(Cas) and c-Cbl, known downstream regulators of the integrin-mediated signaling pathways in osteoclasts. In the presence of M-CSF, co-localization of alpha(V)beta(3) integrin and cFms was identified in the podosomal actin ring of the osteoclast during adhesion on glass. Interestingly, co-localization of both receptors was not found in the sealing zone, but in punctate structures associated with adhesion- or transcytosis-like structures in osteoclasts on bone. Taken together, we suggest that the association of alpha(V)beta(3) and cFms could be the result of signaling following tyrosine phosphorylation of cFms. The recruitment of cFms to alpha(V)beta(3) integrin may be an integral part of a larger signaling complex via which both of adhesion- and growth factor receptors coordinately regulate osteoclast adhesion, motility and membrane trafficking.


Epigenetic and transcriptional regulation of CCL17 production by glucocorticoids in arthritis.

  • Tanya J Lupancu‎ et al.
  • iScience‎
  • 2023‎

Glucocorticoids (GCs) are potent anti-inflammatory agents and are broadly used in treating rheumatoid arthritis (RA) patients, albeit with adverse side effects associated with long-term usage. The negative consequences of GC therapy provide an impetus for research into gaining insights into the molecular mechanisms of GC action. We have previously reported that granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced CCL17 has a non-redundant role in inflammatory arthritis. Here, we provide molecular evidence that GCs can suppress GM-CSF-mediated upregulation of IRF4 and CCL17 expression via downregulating JMJD3 expression and activity. In mouse models of inflammatory arthritis, GC treatment inhibited CCL17 expression and ameliorated arthritic pain-like behavior and disease. Significantly, GC treatment of RA patient peripheral blood mononuclear cells ex vivo resulted in decreased CCL17 production. This delineated pathway potentially provides new therapeutic options for the treatment of many inflammatory conditions, where GCs are used as an anti-inflammatory drug but without the associated adverse side effects.


Glucocorticoids promote apoptosis of proinflammatory monocytes by inhibiting ERK activity.

  • Adrian Achuthan‎ et al.
  • Cell death & disease‎
  • 2018‎

Glucocorticoids (GCs) are potent anti-inflammatory drugs whose mode of action is complex and still debatable. One likely cellular target of GCs are monocytes/macrophages. The role of GCs in monocyte survival is also debated. Although both granulocyte macrophage-colony stimulating factor (GM-CSF) and macrophage-CSF (M-CSF) are important regulators of macrophage lineage functions including their survival, the former is often associated with proinflammatory functions while the latter is important in lineage homeostasis. We report here that the GC, dexamethasone, induces apoptosis in GM-CSF-treated human monocytes while having no impact on M-CSF-induced monocyte survival. To understand how GCs, GM-CSF, and M-CSF are regulating monocyte survival and other functions during inflammation, we firstly examined the transcriptomic changes elicited by these three agents in human monocytes, either acting alone or in combination. Transcriptomic and Ingenuity pathway analyses found that dexamethasone differentially modulated dendritic cell maturation and TREM1 signaling pathways in GM-CSF-treated and M-CSF-treated monocytes, two pathways known to be regulated by ERK1/2 activity. These analyses led us to provide evidence that the GC inhibits ERK1/2 activity selectively in GM-CSF-treated monocytes to induce apoptosis. It is proposed that this inhibition of ERK1/2 activity leads to inactivation of p90 ribosomal-S6 kinase and Bad dephosphorylation leading in turn to enhanced caspase-3 activity and subsequent apoptosis. Furthermore, pharmacological inhibition of GC receptor activity restored the ERK1/2 signaling and prevented the GC-induced apoptosis in GM-CSF-treated monocytes. Increased tissue macrophage numbers, possibly from enhanced survival due to mediators such as GM-CSF, can correlate with inflammatory disease severity; also reduction in these numbers can correlate with the therapeutic benefit of a number of agents, including GCs. We propose that the ERK1/2 signaling pathway promotes survival of GM-CSF-treated proinflammatory monocytes, which can be selectively targeted by GCs as a novel mechanism to reduce local monocyte/macrophage numbers and hence inflammation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: