2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 799 papers

Protein sequence classification with improved extreme learning machine algorithms.

  • Jiuwen Cao‎ et al.
  • BioMed research international‎
  • 2014‎

Precisely classifying a protein sequence from a large biological protein sequences database plays an important role for developing competitive pharmacological products. Comparing the unseen sequence with all the identified protein sequences and returning the category index with the highest similarity scored protein, conventional methods are usually time-consuming. Therefore, it is urgent and necessary to build an efficient protein sequence classification system. In this paper, we study the performance of protein sequence classification using SLFNs. The recent efficient extreme learning machine (ELM) and its invariants are utilized as the training algorithms. The optimal pruned ELM is first employed for protein sequence classification in this paper. To further enhance the performance, the ensemble based SLFNs structure is constructed where multiple SLFNs with the same number of hidden nodes and the same activation function are used as ensembles. For each ensemble, the same training algorithm is adopted. The final category index is derived using the majority voting method. Two approaches, namely, the basic ELM and the OP-ELM, are adopted for the ensemble based SLFNs. The performance is analyzed and compared with several existing methods using datasets obtained from the Protein Information Resource center. The experimental results show the priority of the proposed algorithms.


Machine Learning Readmission Risk Modeling: A Pediatric Case Study.

  • Patricio Wolff‎ et al.
  • BioMed research international‎
  • 2019‎

Hospital readmission prediction in pediatric hospitals has received little attention. Studies have focused on the readmission frequency analysis stratified by disease and demographic/geographic characteristics but there are no predictive modeling approaches, which may be useful to identify preventable readmissions that constitute a major portion of the cost attributed to readmissions.


Identifying COVID-19-Specific Transcriptomic Biomarkers with Machine Learning Methods.

  • Lei Chen‎ et al.
  • BioMed research international‎
  • 2021‎

COVID-19, a severe respiratory disease caused by a new type of coronavirus SARS-CoV-2, has been spreading all over the world. Patients infected with SARS-CoV-2 may have no pathogenic symptoms, i.e., presymptomatic patients and asymptomatic patients. Both patients could further spread the virus to other susceptible people, thereby making the control of COVID-19 difficult. The two major challenges for COVID-19 diagnosis at present are as follows: (1) patients could share similar symptoms with other respiratory infections, and (2) patients may not have any symptoms but could still spread the virus. Therefore, new biomarkers at different omics levels are required for the large-scale screening and diagnosis of COVID-19. Although some initial analyses could identify a group of candidate gene biomarkers for COVID-19, the previous work still could not identify biomarkers capable for clinical use in COVID-19, which requires disease-specific diagnosis compared with other multiple infectious diseases. As an extension of the previous study, optimized machine learning models were applied in the present study to identify some specific qualitative host biomarkers associated with COVID-19 infection on the basis of a publicly released transcriptomic dataset, which included healthy controls and patients with bacterial infection, influenza, COVID-19, and other kinds of coronavirus. This dataset was first analysed by Boruta, Max-Relevance and Min-Redundancy feature selection methods one by one, resulting in a feature list. This list was fed into the incremental feature selection method, incorporating one of the classification algorithms to extract essential biomarkers and build efficient classifiers and classification rules. The capacity of these findings to distinguish COVID-19 with other similar respiratory infectious diseases at the transcriptomic level was also validated, which may improve the efficacy and accuracy of COVID-19 diagnosis.


Classification of Cancer Primary Sites Using Machine Learning and Somatic Mutations.

  • Yukun Chen‎ et al.
  • BioMed research international‎
  • 2015‎

An accurate classification of human cancer, including its primary site, is important for better understanding of cancer and effective therapeutic strategies development. The available big data of somatic mutations provides us a great opportunity to investigate cancer classification using machine learning. Here, we explored the patterns of 1,760,846 somatic mutations identified from 230,255 cancer patients along with gene function information using support vector machine. Specifically, we performed a multiclass classification experiment over the 17 tumor sites using the gene symbol, somatic mutation, chromosome, and gene functional pathway as predictors for 6,751 subjects. The performance of the baseline using only gene features is 0.57 in accuracy. It was improved to 0.62 when adding the information of mutation and chromosome. Among the predictable primary tumor sites, the prediction of five primary sites (large intestine, liver, skin, pancreas, and lung) could achieve the performance with more than 0.70 in F-measure. The model of the large intestine ranked the first with 0.87 in F-measure. The results demonstrate that the somatic mutation information is useful for prediction of primary tumor sites with machine learning modeling. To our knowledge, this study is the first investigation of the primary sites classification using machine learning and somatic mutation data.


Identifying Human Phenotype Terms by Combining Machine Learning and Validation Rules.

  • Manuel Lobo‎ et al.
  • BioMed research international‎
  • 2017‎

Named-Entity Recognition is commonly used to identify biological entities such as proteins, genes, and chemical compounds found in scientific articles. The Human Phenotype Ontology (HPO) is an ontology that provides a standardized vocabulary for phenotypic abnormalities found in human diseases. This article presents the Identifying Human Phenotypes (IHP) system, tuned to recognize HPO entities in unstructured text. IHP uses Stanford CoreNLP for text processing and applies Conditional Random Fields trained with a rich feature set, which includes linguistic, orthographic, morphologic, lexical, and context features created for the machine learning-based classifier. However, the main novelty of IHP is its validation step based on a set of carefully crafted manual rules, such as the negative connotation analysis, that combined with a dictionary can filter incorrectly identified entities, find missed entities, and combine adjacent entities. The performance of IHP was evaluated using the recently published HPO Gold Standardized Corpora (GSC), where the system Bio-LarK CR obtained the best F-measure of 0.56. IHP achieved an F-measure of 0.65 on the GSC. Due to inconsistencies found in the GSC, an extended version of the GSC was created, adding 881 entities and modifying 4 entities. IHP achieved an F-measure of 0.863 on the new GSC.


Machine Learning Supports Long Noncoding RNAs as Expression Markers for Endometrial Carcinoma.

  • Ana Carolina Mello‎ et al.
  • BioMed research international‎
  • 2020‎

Uterine corpus endometrial carcinoma (UCEC) is the second most common type of gynecological tumor. Several research studies have recently shown the potential of different ncRNAs as biomarkers for prognostics and diagnosis in different types of cancers, including UCEC. Thus, we hypothesized that long noncoding RNAs (lncRNAs) could serve as efficient factors to discriminate solid primary (TP) and normal adjacent (NT) tissues in UCEC with high accuracy. We performed an in silico differential expression analysis comparing TP and NT from a set of samples downloaded from the Cancer Genome Atlas (TCGA) database, targeting highly differentially expressed lncRNAs that could potentially serve as gene expression markers. All analyses were performed in R software. The receiver operator characteristics (ROC) analyses and both supervised and unsupervised machine learning indicated a set of 14 lncRNAs that may serve as biomarkers for UCEC. Functions and putative pathways were assessed through a coexpression network and target enrichment analysis.


Investigating the Lung Adenocarcinoma Stem Cell Biomarker Expressions Using Machine Learning Approaches.

  • M S Bhuvaneswari‎ et al.
  • BioMed research international‎
  • 2022‎

The objective of the study is to look at the activation of stem cell-related markers in lung adenocarcinoma. Utilizing an unsupervised machine learning approach centered on the mRNA expression of pluripotent stem cells as well as its subsequent developed progeny, the mRNA stemness index of further around 500 LUAD patients from The Cancer Genome Atlas dataset was generated. In LUADs, mRNAsi had first been investigated using differential variations, survivability analyses, medical phases, and sexuality. A computational approach is used for identifying cell clusters utilizing fuzzy clustering. There at transcriptional as well as protein stages, the interactions between the genetic markers were investigated. The functionality and processes of the important genes were annotated using expression values. The degree of gene expression related to the clinical symptoms and the likelihood of surviving have also been confirmed. In cancer patients, the mRNAsi genes were highly elevated. In particular, the mRNAsi score rises with advanced trials and varies markedly by sexuality. Within several years, reduced mRNAsi categories will have superior overall survivability in large LUADs. Individuals with chronic LUAD had greater mRNAsi and had reduced average survivability. The important genes and the distinguished categories have been chosen based on their mRNAsi connections. Some of the major genes related to cell proliferating Gene Ontology concepts were found enriched out from the cell cycle Kyoto Encyclopedia of Genes and Genomes (KEGG) process. Specific genes were found to be linked to CSC features. Their activation grew in lockstep with the progression of LUAD's pathology, so these markers appeared amplified in pan-cancers. These important markers were discovered to have substantial connections as a group, suggesting that they could be exploited as drug applications in the therapy of LUAD by suppressing stemness traits.


Vowel Imagery Decoding toward Silent Speech BCI Using Extreme Learning Machine with Electroencephalogram.

  • Beomjun Min‎ et al.
  • BioMed research international‎
  • 2016‎

The purpose of this study is to classify EEG data on imagined speech in a single trial. We recorded EEG data while five subjects imagined different vowels, /a/, /e/, /i/, /o/, and /u/. We divided each single trial dataset into thirty segments and extracted features (mean, variance, standard deviation, and skewness) from all segments. To reduce the dimension of the feature vector, we applied a feature selection algorithm based on the sparse regression model. These features were classified using a support vector machine with a radial basis function kernel, an extreme learning machine, and two variants of an extreme learning machine with different kernels. Because each single trial consisted of thirty segments, our algorithm decided the label of the single trial by selecting the most frequent output among the outputs of the thirty segments. As a result, we observed that the extreme learning machine and its variants achieved better classification rates than the support vector machine with a radial basis function kernel and linear discrimination analysis. Thus, our results suggested that EEG responses to imagined speech could be successfully classified in a single trial using an extreme learning machine with a radial basis function and linear kernel. This study with classification of imagined speech might contribute to the development of silent speech BCI systems.


A Study of Machine-Learning Classifiers for Hypertension Based on Radial Pulse Wave.

  • Zhi-Yu Luo‎ et al.
  • BioMed research international‎
  • 2018‎

In this study, machine learning was utilized to classify and predict pulse wave of hypertensive group and healthy group and assess the risk of hypertension by observing the dynamic change of the pulse wave and provide an objective reference for clinical application of pulse diagnosis in traditional Chinese medicine (TCM).


Detecting Congestive Heart Failure by Extracting Multimodal Features and Employing Machine Learning Techniques.

  • Lal Hussain‎ et al.
  • BioMed research international‎
  • 2020‎

The adaptability of heart to external and internal stimuli is reflected by the heart rate variability (HRV). Reduced HRV can be a predictor of negative cardiovascular outcomes. Based on the nonlinear, nonstationary, and highly complex dynamics of the controlling mechanism of the cardiovascular system, linear HRV measures have limited capability to accurately analyze the underlying dynamics. In this study, we propose an automated system to analyze HRV signals by extracting multimodal features to capture temporal, spectral, and complex dynamics. Robust machine learning techniques, such as support vector machine (SVM) with its kernel (linear, Gaussian, radial base function, and polynomial), decision tree (DT), k-nearest neighbor (KNN), and ensemble classifiers, were employed to evaluate the detection performance. Performance was evaluated in terms of specificity, sensitivity, positive predictive value (PPV), negative predictive value (NPV), and area under the receiver operating characteristic curve (AUC). The highest performance was obtained using SVM linear kernel (TA = 93.1%, AUC = 0.97, 95% CI [lower bound = 0.04, upper bound = 0.89]), followed by ensemble subspace discriminant (TA = 91.4%, AUC = 0.96, 95% CI [lower bound 0.07, upper bound = 0.81]) and SVM medium Gaussian kernel (TA = 90.5%, AUC = 0.95, 95% CI [lower bound = 0.07, upper bound = 0.86]). The results reveal that the proposed approach can provide an effective and computationally efficient tool for automatic detection of congestive heart failure patients.


Identification of Methylated Gene Biomarkers in Patients with Alzheimer's Disease Based on Machine Learning.

  • Jianting Ren‎ et al.
  • BioMed research international‎
  • 2020‎

Alzheimer's disease (AD) is a neurodegenerative disorder and characterized by the cognitive impairments. It is essential to identify potential gene biomarkers for AD pathology.


Long Noncoding RNA Identification: Comparing Machine Learning Based Tools for Long Noncoding Transcripts Discrimination.

  • Siyu Han‎ et al.
  • BioMed research international‎
  • 2016‎

Long noncoding RNA (lncRNA) is a kind of noncoding RNA with length more than 200 nucleotides, which aroused interest of people in recent years. Lots of studies have confirmed that human genome contains many thousands of lncRNAs which exert great influence over some critical regulators of cellular process. With the advent of high-throughput sequencing technologies, a great quantity of sequences is waiting for exploitation. Thus, many programs are developed to distinguish differences between coding and long noncoding transcripts. Different programs are generally designed to be utilised under different circumstances and it is sensible and practical to select an appropriate method according to a certain situation. In this review, several popular methods and their advantages, disadvantages, and application scopes are summarised to assist people in employing a suitable method and obtaining a more reliable result.


An Approach for Predicting Essential Genes Using Multiple Homology Mapping and Machine Learning Algorithms.

  • Hong-Li Hua‎ et al.
  • BioMed research international‎
  • 2016‎

Investigation of essential genes is significant to comprehend the minimal gene sets of cell and discover potential drug targets. In this study, a novel approach based on multiple homology mapping and machine learning method was introduced to predict essential genes. We focused on 25 bacteria which have characterized essential genes. The predictions yielded the highest area under receiver operating characteristic (ROC) curve (AUC) of 0.9716 through tenfold cross-validation test. Proper features were utilized to construct models to make predictions in distantly related bacteria. The accuracy of predictions was evaluated via the consistency of predictions and known essential genes of target species. The highest AUC of 0.9552 and average AUC of 0.8314 were achieved when making predictions across organisms. An independent dataset from Synechococcus elongatus, which was released recently, was obtained for further assessment of the performance of our model. The AUC score of predictions is 0.7855, which is higher than other methods. This research presents that features obtained by homology mapping uniquely can achieve quite great or even better results than those integrated features. Meanwhile, the work indicates that machine learning-based method can assign more efficient weight coefficients than using empirical formula based on biological knowledge.


Machine Learning-Based Differentiation of Nontuberculous Mycobacteria Lung Disease and Pulmonary Tuberculosis Using CT Images.

  • Zhiheng Xing‎ et al.
  • BioMed research international‎
  • 2020‎

An increasing number of patients infected with nontuberculous mycobacteria (NTM) are observed worldwide. However, it is challenging to identify NTM lung diseases from pulmonary tuberculosis (PTB) due to considerable overlap in classic manifestations and clinical and radiographic characteristics. This study quantifies both cavitary and bronchiectasis regions in CT images and explores a machine learning approach for the differentiation of NTM lung diseases and PTB. It involves 116 patients and 103 quantitative features. After the selection of informative features, a linear support vector machine performs disease classification, and simultaneously, discriminative features are recognized. Experimental results indicate that bronchiectasis is relatively more informative, and two features are figured out due to promising prediction performance (area under the curve, 0.84 ± 0.06; accuracy, 0.85 ± 0.06; sensitivity, 0.88 ± 0.07; and specificity, 0.80 ± 0.12). This study provides insight into machine learning-based identification of NTM lung diseases from PTB, and more importantly, it makes early and quick diagnosis of NTM lung diseases possible that can facilitate lung disease management and treatment planning.


Development and Validation of a Magnetic Resonance Imaging-Based Machine Learning Model for TMJ Pathologies.

  • Kaan Orhan‎ et al.
  • BioMed research international‎
  • 2021‎

The purpose of this study was to propose a machine learning model and assess its ability to classify TMJ pathologies on magnetic resonance (MR) images. This retrospective cohort study included 214 TMJs from 107 patients with TMJ signs and symptoms. A radiomics platform was used to extract (Huiying Medical Technology Co., Ltd., China) imaging features of TMJ pathologies, condylar bone changes, and disc displacements. Thereafter, different machine learning (ML) algorithms and logistic regression were implemented on radiomic features for feature selection, classification, and prediction. The following radiomic features included first-order statistics, shape, texture, gray-level cooccurrence matrix (GLCM), gray-level run length matrix (GLRLM), and gray-level size zone matrix (GLSZM). Six classifiers, including logistic regression (LR), random forest (RF), decision tree (DT), k-nearest neighbors (KNN), XGBoost, and support vector machine (SVM) were used for model building which could predict the TMJ pathologies. The performance of models was evaluated by sensitivity, specificity, and ROC curve. KNN and RF classifiers were found to be the most optimal machine learning model for the prediction of TMJ pathologies. The AUC, sensitivity, and specificity for the training set were 0.89 and 1, while those for the testing set were 0.77 and 0.74, respectively, for condylar changes and disc displacement, respectively. For TMJ condylar bone changes Large-Area High-Gray-Level Emphasis, Gray-Level Nonuniformity, Long-Run Emphasis Long-Run High-Gray-Level Emphasis, Flatness, and Volume features, while for TMJ disc displacements Average Intensity, Sum Average, Spherical Disproportion, and Entropy features, were selected. This study has proposed a machine learning model by KNN and RF analysis on TMJ MR images, which can be used to classify condylar changes and TMJ disc displacements.


Exploring the Consistency of the Quality Scores with Machine Learning for Next-Generation Sequencing Experiments.

  • Erdal Cosgun‎ et al.
  • BioMed research international‎
  • 2020‎

Next-generation sequencing enables massively parallel processing, allowing lower cost than the other sequencing technologies. In the subsequent analysis with the NGS data, one of the major concerns is the reliability of variant calls. Although researchers can utilize raw quality scores of variant calling, they are forced to start the further analysis without any preevaluation of the quality scores.


Machine Learning Analysis of Image Data Based on Detailed MR Image Reports for Nasopharyngeal Carcinoma Prognosis.

  • Chunyan Cui‎ et al.
  • BioMed research international‎
  • 2020‎

We aimed to assess the use of automatic machine learning (AutoML) algorithm based on magnetic resonance (MR) image data to assign prediction scores to patients with nasopharyngeal carcinoma (NPC). We also aimed to develop a 4-group classification system for NPC, superior to the current clinical staging system. Between January 2010 and January 2013, 792 patients with recent diagnosis of NPC, who had MR image data, were enrolled in the study. The AutoML algorithm was used and all statistical analyses were based on the 10-fold test. Primary endpoints included the probabilities of overall survival (OS), distant metastasis-free survival (DMFS), and local-region relapse-free survival (LRFS), and their sum was recorded as the final voting score, representative of progression-free survival (PFS) for each patient. The area under the receiver operating characteristic (ROC) curve generated from the MR image data-based model compared with the tumor, node, and metastasis (TNM) system-based model was 0.796 (P=0.008) for OS, 0.752 (P=0.053) for DMFS, and 0.721 (P=0.025) for LRFS. The Kaplan-Meier (KM) test values for II/I, III/II, IV/III groups in our new machine learning-based scoring system were 0.011, 0.010, and <0.001, respectively, whereas those for II/I, III/II, IV/III groups in the TNM/American Joint Committee on Cancer (AJCC) system were 0.118, 0.121, and <0.001, respectively. Significant differences were observed in the new machine learning-based scoring system analysis of each curve (P < 0.05), whereas the P values of curves obtained from the TNM/AJCC system, between II/I and III/II, were 0.118 and 0.121, respectively, without a significant difference. In conclusion, the AutoML algorithm demonstrated better prognostic performance than the TNM/AJCC system for NPC. The algorithm showed a good potential for clinical application and may aid in improving counseling and facilitate the personalized management of patients with NPC. The clinical application of our new scoring and staging system may significantly improve precision medicine.


Machine Learning Models for Survival and Neurological Outcome Prediction of Out-of-Hospital Cardiac Arrest Patients.

  • Chi-Yung Cheng‎ et al.
  • BioMed research international‎
  • 2021‎

Out-of-hospital cardiac arrest (OHCA) is a major health problem worldwide, and neurologic injury remains the leading cause of morbidity and mortality among survivors of OHCA. The purpose of this study was to investigate whether a machine learning algorithm could detect complex dependencies between clinical variables in emergency departments in OHCA survivors and perform reliable predictions of favorable neurologic outcomes.


Qualitative and Quantitative MRI Analysis in IDH1 Genotype Prediction of Lower-Grade Gliomas: A Machine Learning Approach.

  • Mengqiu Cao‎ et al.
  • BioMed research international‎
  • 2021‎

Preoperative prediction of isocitrate dehydrogenase 1 (IDH1) mutation in lower-grade gliomas (LGGs) is crucial for clinical decision-making. This study aimed to examine the predictive value of a machine learning approach using qualitative and quantitative MRI features to identify the IDH1 mutation in LGGs.


Machine Learning Algorithms Identify Pathogen-Specific Biomarkers of Clinical and Metabolomic Characteristics in Septic Patients with Bacterial Infections.

  • Lingling Zheng‎ et al.
  • BioMed research international‎
  • 2020‎

Sepsis is a high-mortality disease that is infected by bacteria, but pathogens in individual patients are difficult to diagnosis. Metabolomic changes triggered by microbial activity provide us with the possibility of accurately identifying infection. We adopted machine learning methods for training different classifiers with a clinical-metabolomic database from sepsis cases to identify the pathogen of sepsis. Records of clinical indicators and concentration of metabolites were obtained for each patient upon their arrival at the hospital. Machine learning algorithms were used in 100 patients with clear infection and corresponding 29 controls to select specific biosignatures to discriminate microorganism in septic patients. The sensitivity, specificity, and AUC value of clinical and metabolomic characteristics in predicting diagnostic outcomes were determined at admission. Our analyses demonstrate that the biosignatures selected by machine learning algorithms could have diagnostic value on the identification of infected patients and Gram-positive from Gram-negative; related AUC values were 0.94 ± 0.054 and 0.80 ± 0.085, respectively. Pathway and blood disease enrichment analyses of clinical and metabolomic biomarkers among infected patients showed that sepsis disease was accompanied by abnormal nitrogen metabolism, cell respiratory disorder, and renal or intestinal failure. The panel of selected clinical and metabolomic characteristics might be powerful biomarkers to discriminate patients with sepsis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: