Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

Modulation of β-catenin signaling by the inhibitors of MAP kinase, tyrosine kinase, and PI3-kinase pathways.

  • Wenwen Zhang‎ et al.
  • International journal of medical sciences‎
  • 2013‎

Aberrant activation of β-catenin signaling plays an important role in human tumorigenesis. However, molecular mechanisms behind the β-catenin signaling deregulation are mostly unknown because genetic alterations in this pathway only account for a small fraction of tumors. Here, we investigator if other major pathways can regulate β-catenin signaling activity. By employing a panel of chemical activators and/or inhibitors of several cellular signaling pathways, we assess these modulators' effects on luciferase reporter driven by β-catenin/TCF4-responsive elements. We find that lithium-stimulated β-catenin activity is synergistically enhanced by protein kinase C activator PMA. However, β-catenin-regulated transcriptional (CRT) activity is significantly inhibited by casein kinase II inhibitor DRB, MEK inhibitor PD98059, G-proteins and their receptor uncoupling agent suramin, protein tyrosine kinase inhibitor genistein, and PI-3 kinase inhibitor wortmannin, suggesting that these cellular pathways may participate in regulating β-catenin signaling. Interestingly, the Ca⁺⁺/calmodulin kinase II inhibitor HDBA is shown to activate β-catenin activity at low doses. Furthermore, Wnt3A-stimulated and constitutively activated CRT activities, as well as the intracellular accumulation of β-catenin protein in human colon cancer cells, are effectively suppressed by PD98059, genistein, and wortmannin. We further demonstrate that EGF can activate TCF4/β-catenin activity and induce the tyrosine phosphorylation of β-catenin protein. Thus, our results should provide important insights into the molecular mechanisms underlying Wnt/β-catenin activation. This knowledge should facilitate our efforts to develop efficacious and novel therapeutics by targeting these pathways.


Structure of the human κ-opioid receptor in complex with JDTic.

  • Huixian Wu‎ et al.
  • Nature‎
  • 2012‎

Opioid receptors mediate the actions of endogenous and exogenous opioids on many physiological processes, including the regulation of pain, respiratory drive, mood, and--in the case of κ-opioid receptor (κ-OR)--dysphoria and psychotomimesis. Here we report the crystal structure of the human κ-OR in complex with the selective antagonist JDTic, arranged in parallel dimers, at 2.9 Å resolution. The structure reveals important features of the ligand-binding pocket that contribute to the high affinity and subtype selectivity of JDTic for the human κ-OR. Modelling of other important κ-OR-selective ligands, including the morphinan-derived antagonists norbinaltorphimine and 5'-guanidinonaltrindole, and the diterpene agonist salvinorin A analogue RB-64, reveals both common and distinct features for binding these diverse chemotypes. Analysis of site-directed mutagenesis and ligand structure-activity relationships confirms the interactions observed in the crystal structure, thereby providing a molecular explanation for κ-OR subtype selectivity, and essential insights for the design of compounds with new pharmacological properties targeting the human κ-OR.


Six3 in a small population of progenitors at E8.5 is required for neuroretinal specification via regulating cell signaling and survival in mice.

  • Wei Liu‎ et al.
  • Developmental biology‎
  • 2017‎

Neuroretina and retinal pigment epithelium (RPE) are differentiated from the progenitors in optic vesicles, but it is unclear when and how the two lineages are segregated. Manipulation of chick embryos reveals that the early anteroventral optic vesicle is crucial for neuroretinal development, but the molecular mechanism is unclear. Homeodomain transcription factor Six3 is required for neuroretinal specification and is dispensable for RPE formation, but the cell fates of Six3-deficient progenitors and the origins of remnant RPE are unknown. Here, we performed lineage tracing of Six3-Cre positive cells in wild-type and Six3-deficient mouse embryos. Six3-Cre positive progenies were found in a population of progenitors in the anteroventral optic pits/vesicles starting at E8.5, and were found in neuroretina, optic stalk, ventral forebrain, but not RPE, at E10.5. Six3-deletion in the small population of progenitors at E8.5 was sufficient to cause rostral expansion of Wnt8b and drastic reduction of Fgf8/MAPK signaling, ablating neuroretinal specification without affecting RPE. Lineage tracing revealed Six3-deficient progenitors at E8.5 were eventually lost and the remnant RPE was derived from Six3-Cre negative cells. Thus, Six3 in a small population of progenitors expressing Six3-Cre at E8.5 is required for neuroretinal specification via regulating cell signaling and survival in mice.


H1N1 Influenza Virus Cross-Activates Gli1 to Disrupt the Intercellular Junctions of Alveolar Epithelial Cells.

  • Tao Ruan‎ et al.
  • Cell reports‎
  • 2020‎

Influenza A virus (IAV) primarily infects the airway and alveolar epithelial cells and disrupts the intercellular junctions, leading to increased paracellular permeability. Although this pathological change plays a critical role in lung tissue injury and secondary infection, the molecular mechanism of IAV-induced damage to the alveolar barrier remains obscure. Here, we report that Gli1, a transcription factor in the sonic hedgehog (Shh) signaling pathway, is cross-activated by the MAP and PI3 kinase pathways in H1N1 virus (PR8)-infected A549 cells and in the lungs of H1N1 virus-infected mice. Gli1 activation induces Snail expression, which downregulates the expression of intercellular junction proteins, including E-cadherin, ZO-1, and Occludin, and increases paracellular permeability. Inhibition of the Shh pathway restores the levels of Snail and intercellular junction proteins in H1N1-infected cells. Our study suggests that Gli1 activation plays an important role in disrupting the intercellular junctions and in promoting the pathogenesis of H1N1 virus infections.


Bioinformatics analysis of RNA sequencing data reveals multiple key genes in uterine corpus endometrial carcinoma.

  • Liang Shen‎ et al.
  • Oncology letters‎
  • 2018‎

In the present study, the RNA sequencing (RNA-seq) data of uterine corpus endometrial carcinoma (UCEC) samples were collected and analyzed using bioinformatics tools to identify potential genes associated with the development of UCEC. UCEC RNA-seq data were downloaded from The Cancer Genome Atlas database. Differential analysis was performed using edgeR software. A false discovery rate <0.01 and |log2(fold change)|>1 were set as the cut-off criteria to screen for differentially expressed genes (DEGs). Differential gene co-expression analysis was performed using R/EBcoexpress package in R. DEGs in the gene co-expression network were subjected to Gene Ontology analysis using the Database for Annotation, Visualization and Integration Discovery. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis was also performed on the DEGs using KOBAS 2.0 software. The ConnectivityMap database was used to identify novel drug candidates. A total of 3,742 DEGs were identified among the 552 UCEC samples and 35 normal controls, and comprised 2,580 upregulated and 1,162 downregulated genes. A gene co-expression network consisting of 129 DEGs and 368 edges was constructed. Genes were associated with the cell cycle and the tumor protein p53 signaling pathway. Three modules were identified, in which genes were associated with the mitotic cell cycle, nuclear division and the M phase of the mitotic cell cycle. Multiple key hub genes were identified, including cell division cycle 20, cyclin B2, non-SMC condensin I complex subunit H, BUB1 mitotic checkpoint serine/threonine kinase, cell division cycle associated 8, maternal embryonic leucine zipper kinase, MYB proto-oncogene like 2, TPX2, microtubule nucleation factor and non-SMC condensin I complex subunit G. In addition, the small molecule drug esculetin was implicated in the suppression of UCEC progression. Overall, the present study identified multiple key genes in UCEC and clinically relevant small molecule agents, thereby improving our understanding of UCEC and expanding perspectives on targeted therapy for this type of cancer.


JARID2 coordinates with the NuRD complex to facilitate breast tumorigenesis through response to adipocyte-derived leptin.

  • Wei Liu‎ et al.
  • Cancer communications (London, England)‎
  • 2023‎

Proteins containing the Jumonji C (JmjC) domain participated in tumorigenesis and cancer progression. However, the mechanisms underlying this effect are still poorly understood. Our objective was to investigate the role of Jumonji and the AT-rich interaction domain-containing 2 (JARID2) - a JmjC family protein - in breast cancer, as well as its latent association with obesity.


FGF21/FGFR1-β-KL cascade in cardiomyocytes modulates angiogenesis and inflammation under metabolic stress.

  • Namrita Kaur‎ et al.
  • Heliyon‎
  • 2023‎

Diabetes is a metabolic disorder with an increased risk of developing heart failure. Inflammation and damaged vasculature are the cardinal features of diabetes-induced cardiac damage. Moreover, systemic metabolic stress triggers discordant intercellular communication, thus culminating in cardiac dysfunction. Fibroblast growth factor 21 (FGF21) is a pleiotropic hormone transducing cellular signals via fibroblast growth factor receptor 1 (FGFR1) and its co-receptor beta-klotho (β-KL). This study first demonstrated a decreased expression or activity of FGFR1 and β-KL in both human and mouse diabetic hearts. Reinforcing cardiac FGFR1 and β-KL expression can alleviate pro-inflammatory response and endothelial dysfunction upon diabetic stress. Using proteomics, novel cardiomyocyte-derived anti-inflammatory and proangiogenic factors regulated by FGFR1-β-KL signaling were identified. Although not exhaustive, this study provides a unique insight into the protective topology of the cardiac FGFR1-β-KL signaling-mediated intercellular reactions in the heart in response to metabolic stress.


Genome-wide characterization and expression analysis of soybean trihelix gene family.

  • Wei Liu‎ et al.
  • PeerJ‎
  • 2020‎

Trihelix transcription factors play multiple roles in plant growth, development and various stress responses. In this study, we identified 71 trihelix family genes in the soybean genome. These trihelix genes were located at 19 out of 20 soybean chromosomes unevenly and were classified into six distinct subfamilies: GT-1, GT-2, GTγ, SIP1, SH4 and GTδ. The gene structure and conserved functional domain of these trihelix genes were similar in the same subfamily but diverged between different subfamilies. Thirteen segmental duplicated gene pairs were identified and all of them experienced a strong purifying selective pressure during evolution. Various stress-responsive cis-elements presented in the promoters of soybean trihelix genes, suggesting that the trihelix genes might respond to the environmental stresses in soybean. The expression analysis suggests that trihelix genes are involved in diverse functions during soybean development, flood or salinity tolerance, and plant immunity. Our results provide genomic information of the soybean trihelix genes and a basis for further characterizing their roles in response to environmental stresses.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: