Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Amplification of 9p24.1 in diffuse large B-cell lymphoma identifies a unique subset of cases that resemble primary mediastinal large B-cell lymphoma.

  • Yucai Wang‎ et al.
  • Blood cancer journal‎
  • 2019‎

Copy number alterations (CNAs) of 9p24.1 occur frequently in Hodgkin lymphoma, primary mediastinal large B-cell lymphoma (PMBCL), primary central nervous system lymphoma, and primary testicular lymphoma, resulting in overexpression of PD-L1 and sensitivity to PD-1 blockade-based immunotherapy. While 9p24.1 CNA was also reported in diffuse large B-cell lymphoma (DLBCL), little is known about its molecular or clinical significance. In this study, we analyzed the prevalence of 9p24.1 CNA in newly diagnosed DLBCL and examined its association with PD-L1, PD-L2, and JAK2 expression, clinical characteristics, and outcome. We found that 10% of DLBCL cases had CNA of 9p24.1, with 6.5% gains, and 3.5% amplifications. Only the cases with a 9p24.1 amplification had high levels of PD-L1, PD-L2, and JAK2 expression. Gains or amplifications of 9p24.1 were associated with a younger age and the ABC/non-GCB subtype. Compared with DLBCL cases without 9p24.1 CNA, the cases with a 9p24.1 amplification had a trend of better event-free survival. Furthermore, the amplification cases had a gene expression and mutation profile similar to those of PMBCL. Our data suggest that amplification of 9p24.1 identifies a unique subset of DLBCL with clinical and molecular features resembling PMBCL that may be amenable to PD-1 blockade-based immunotherapy.


Loss of TNFAIP3 enhances MYD88L265P-driven signaling in non-Hodgkin lymphoma.

  • Kerstin Wenzl‎ et al.
  • Blood cancer journal‎
  • 2018‎

MYD88 mutations are one of the most recurrent mutations in hematologic malignancies. However, recent mouse models suggest that MYD88L265P alone may not be sufficient to induce tumor formation. Interplay between MYD88L265P and other genetic events is further supported by the fact that TNFAIP3 (A20) inactivation often accompanies MYD88L265P. However, we are still lacking information about the consequence of MYD88L265P in combination with TNFAIP3 loss in human B cell lymphoma. Review of our genetic data on diffuse large B cell lymphoma (DLBCL) and Waldenstrom macroglobulinemia (WM), found that a large percentage of DLBCL and WM cases that have a MYD88 mutation also harbor a TNFAIP3 loss, 55% DLBCL and 28% of WM, respectively. To mimic this combination of genetic events, we used genomic editing technology to knock out TNFAIP3 in MYD88L265P non-Hodgkin's lymphoma (NHL) cell lines. Loss of A20 expression resulted in increased NF-κB and p38 activity leading to upregulation of the NF-κB target genes BCL2 and MYC. Furthermore, we detected the increased production of IL-6 and CXCL10 which led to an upregulation of the JAK/STAT pathway. Overall, these results suggest that MYD88L265P signaling can be enhanced by a second genetic alteration in TNFAIP3 and highlights a potential opportunity for therapeutic targeting.


Somatic copy number gains in MYC, BCL2, and BCL6 identifies a subset of aggressive alternative-DH/TH DLBCL patients.

  • Jordan E Krull‎ et al.
  • Blood cancer journal‎
  • 2020‎

Double/triple hit lymphoma (DH/TH), known as high-grade B-cell lymphoma (HGBL), is an aggressive diffuse large B cell lymphoma (DLBCL), defined as having concurrent MYC, BCL2, and/or BCL6 gene rearrangements. While gene rearrangements represent significant genetic events in cancer, copy number alterations (CNAs) also play an important role, and their contributions to rearrangements have yet to be fully elucidated. Using FISH and high-resolution CNA data, we defined the landscape of concurrent gene rearrangements and copy gains in MYC, BCL2, and BCL6, in a cohort of 479 newly diagnosed DLBCL. We also show that concurrent translocations and copy number alterations, in combinations similar to DH/TH, identify a unique subset of DLBCL, alternative DH/TH, that have survival outcomes similar to DH/TH DLBCL patients.


Defining cure in multiple myeloma: a comparative study of outcomes of young individuals with myeloma and curable hematologic malignancies.

  • Praful Ravi‎ et al.
  • Blood cancer journal‎
  • 2018‎

Advances in therapy in recent years have led investigators to challenge the dogma that multiple myeloma (MM) is incurable. We assessed overall (OS) and progression-free survival (PFS) of young patients ( ≤ 50 years) with MM and compared outcomes with follicular lymphoma (FL), diffuse large B-cell lymphoma (DLBCL), and Hodgkin lymphoma (HL). All patients ≤ 50 years with newly diagnosed MM (n = 212), FL (n = 168), DLBCL (n = 195), and HL (n = 233) between 1 January 2005 and 31 December 2015 were included. Observed vs. expected survival was summarized by standardized mortality ratios (SMR). Compared to the background US population, excess mortality risk was seen at diagnosis in all four cancers, SMR 19.5 (15.2-24.5) in MM, 4.2 (2.3-7.2) in FL, 13.0 (9.2-18.4) in DLBCL, and 5.2 (2.6-9.3) in HL. We reasoned that cure would most likely occur in the first 3 years after diagnosis and be reflected by an overall survival probability similar to the background population. From the 36-month landmark, excess mortality risk was seen in MM (SMR 20.7 [14.7-28.3]) and FL (SMR 3.8 [1.5-7.8]), but not with DLBCL (SMR 3.1 [0.8-8.0]) or HL (SMR 0.9 [0.0-5.1]). MM patients have 20-fold excess mortality risk compared to the background population at diagnosis and at 3 years after diagnosis, suggesting that MM remains an incurable cancer.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: