2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Localization of NADPH diaphorase in the lumbosacral spinal cord and dorsal root ganglia of the cat.

  • M A Vizzard‎ et al.
  • The Journal of comparative neurology‎
  • 1994‎

The distribution of NADPH-d activity in the spinal cord and dorsal root ganglia of the cat was studied to evaluate the role of nitric oxide in lumbosacral afferent and spinal autonomic pathways. At all levels of the spinal cord NADPH-d staining was present in neurons and fibers in the superficial dorsal horn and in neurons around the central canal and in the dorsal commissure. In addition, the sympathetic autonomic nucleus in the rostral lumbar segments exhibited prominent NADPH-d cellular staining whereas the parasympathetic nucleus in the sacral segments was not well stained. The most prominent NADPH-d activity in the sacral segments occurred in fibers extending from Lissauer's tract through laminae I along the lateral edge of the dorsal horn to lamina V and the region of the sacral parasympathetic nucleus. These fibers were very similar to VIP-containing and pelvic nerve afferent projections in the same region. They were prominent in the S1-S3 segments but not in adjacent segments (L6-L7 and Cx1) or in thoracolumbar and cervical segments. NADPH-d activity and VIP immunoreactivity in Lissauer's tract and the lateral dorsal horn were eliminated or greatly reduced after dorsal-ventral rhizotomy (S1-S3), indicating the fibers represent primary afferent projections. A population of small diameter afferent neurons in the L7-S2 dorsal root ganglia were intensely stained for NADPH-d. The functional significance of the NADPH-d histochemical stain remains to be determined; however, if NADPH-d is nitric oxide synthase then this would suggest that nitric oxide may function as a transmitter in thoracolumbar sympathetic preganglionic efferent pathways and in sacral parasympathetic afferent pathways in the cat.


Barrington's nucleus: Neuroanatomic landscape of the mouse "pontine micturition center".

  • Anne M J Verstegen‎ et al.
  • The Journal of comparative neurology‎
  • 2017‎

Barrington's nucleus (Bar) is thought to contain neurons that trigger voiding and thereby function as the "pontine micturition center." Lacking detailed information on this region in mice, we examined gene and protein markers to characterize Bar and the neurons surrounding it. Like rats and cats, mice have an ovoid core of medium-sized Bar neurons located medial to the locus coeruleus (LC). Bar neurons express a GFP reporter for Vglut2, develop from a Math1/Atoh1 lineage, and exhibit immunoreactivity for NeuN. Many neurons in and around this core cluster express a reporter for corticotrophin-releasing hormone (BarCRH ). Axons from BarCRH neurons project to the lumbosacral spinal cord and ramify extensively in two regions: the dorsal gray commissural and intermediolateral nuclei. BarCRH neurons have unexpectedly long dendrites, which may receive synaptic input from the cerebral cortex and other brain regions beyond the core afferents identified previously. Finally, at least five populations of neurons surround Bar: rostral-dorsomedial cholinergic neurons in the laterodorsal tegmental nucleus; lateral noradrenergic neurons in the LC; medial GABAergic neurons in the pontine central gray; ventromedial, small GABAergic neurons that express FoxP2; and dorsolateral glutamatergic neurons that express FoxP2 in the pLC and form a wedge dividing Bar from the dorsal LC. We discuss the implications of this new information for interpreting existing data and future experiments targeting BarCRH neurons and their synaptic afferents to study micturition and other pelvic functions.


Monoaminergic systems in the brainstem and spinal cord of the turtle Pseudemys scripta elegans as revealed by antibodies against serotonin and tyrosine hydroxylase.

  • O Kiehn‎ et al.
  • The Journal of comparative neurology‎
  • 1992‎

With the aim of gaining more insight into the monoaminergic regulation of spinal motor systems in the turtle, we have studied the distribution of 5-HT (5-HTir) and tyrosine hydroxylase immunoreactivity (THir) in the brainstem and spinal cord of Pseudemys scripta elegans. 5-HTir cell bodies were located in the midline in nucleus raphe inferior, nucleus raphe superior, and laterally in nuclei reticularis superior and inferior and nucleus reticularis isthmi. THir cell bodies were located in the commissural nucleus, nucleus tractus solitarii, the locus coeruleus-subcoeruleus complex, nuclei reticularis superior and inferior, the pretectal area, and substantia nigra. 5-HTir and THir tracts were found in lateral and ventral bundles superficially in the brainstem. 5-HTir fibers in the spinal cord were located in a large dorsolateral and a smaller ventrolateral tract. In the gray matter, a high concentration of 5-HTir fibers were observed in areas I-IV and in the lateral motor column of cervical and lumbar enlargements. Areas V-VIII and area X were less intensively innervated, with the lowest fibre concentration in areas VII-VIII and area X. Throughout the spinal cord, THir nerve fibres were located in the same areas but with a lower density. Small bipolar 5-HTir and THir cell bodies were found ventromedially to the central canal especially in cervical and lumbosacral segments. Large THir cells were found in area IX in the caudal sacral and coccygeal spinal cord. THir cerebrospinal fluid-contacting cells were also found in the most caudal part of the brainstem and the upper cervical spinal cord. The well developed spinal 5-HT system and the less developed THir system provides an anatomical explanation for the monoaminergic modulation of turtle motoneuron membrane properties, which has been observed in electrophysiological experiments.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: