Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Hemin induces autophagy in a leukemic erythroblast cell line through the LRP1 receptor.

  • Ruben Adrian Grosso‎ et al.
  • Bioscience reports‎
  • 2019‎

Hemin is an erythropoietic inductor capable of inducing autophagy in erythroid-like cell lines. Low-density lipoprotein receptor-related protein 1 (LRP1) is a transmembrane receptor involved in a wide range of cellular processes, such as proliferation, differentiation, and metabolism. Our aim was to evaluate whether LRP1 is responsible for hemin activity in K562 cells, with the results demonstrating a three-fold increase in LRP1 gene expression levels (P-values <0.001) when assessed by quantitative real-time RT-PCR (qRT-PCR). Moreover, a 70% higher protein amount was observed compared with control condition (P-values <0.01) by Western blot (WB). Time kinetic assays demonstrated a peak in light chain 3 (LC3) II (LC3II) levels after 8 h of hemin stimulation and the localization of LRP1 in the autophagosome structures. Silencing LRP1 by siRNA decreased drastically the hemin-induced autophagy activity by almost 80% compared with control cells (P-values <0.01). Confocal localization and biochemical analysis indicated a significant redistribution of LRP1 from early endosomes and recycling compartments to late endosomes and autophagolysosomes, where the receptor is degraded. We conclude that LRP1 is responsible for hemin-induced autophagy activity in the erythroblastic cell line and that hemin-LRP1 complex activation promotes a self-regulation of the receptor. Our results suggest that hemin, via the LRP1 receptor, favors erythroid maturation by inducing an autophagic response, making it a possible therapeutic candidate to help in the treatment of hematological disorders.


Activated Alpha-2 Macroglobulin Improves Insulin Response via LRP1 in Lipid-Loaded HL-1 Cardiomyocytes.

  • Virginia Actis Dato‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Activated alpha-2 Macroglobulin (α2M*) is specifically recognized by the cluster I/II of LRP1 (Low-density lipoprotein Receptor-related Protein-1). LRP1 is a scaffold protein for insulin receptor involved in the insulin-induced glucose transporter type 4 (GLUT4) translocation to plasma membrane and glucose uptake in different types of cells. Moreover, the cluster II of LRP1 plays a critical role in the internalization of atherogenic lipoproteins, such as aggregated Low-density Lipoproteins (aggLDL), promoting intracellular cholesteryl ester (CE) accumulation mainly in arterial intima and myocardium. The aggLDL uptake by LRP1 impairs GLUT4 traffic and the insulin response in cardiomyocytes. However, the link between CE accumulation, insulin action, and cardiac dysfunction are largely unknown. Here, we found that α2M* increased GLUT4 expression on cell surface by Rab4, Rab8A, and Rab10-mediated recycling through PI3K/Akt and MAPK/ERK signaling activation. Moreover, α2M* enhanced the insulin response increasing insulin-induced glucose uptake rate in the myocardium under normal conditions. On the other hand, α2M* blocked the intracellular CE accumulation, improved the insulin response and reduced cardiac damage in HL-1 cardiomyocytes exposed to aggLDL. In conclusion, α2M* by its agonist action on LRP1, counteracts the deleterious effects of aggLDL in cardiomyocytes, which may have therapeutic implications in cardiovascular diseases associated with hypercholesterolemia.


LRP1-Mediated AggLDL Endocytosis Promotes Cholesteryl Ester Accumulation and Impairs Insulin Response in HL-1 Cells.

  • Virginia Actis Dato‎ et al.
  • Cells‎
  • 2020‎

Abstract: The cardiovascular disease (CVD) frequently developed during metabolic syndrome and type-2 diabetes mellitus is associated with increased levels of aggregation-prone small LDL particles. Aggregated LDL (aggLDL) internalization is mediated by low-density lipoprotein receptor-related protein-1 (LRP1) promoting intracellular cholesteryl ester (CE) accumulation. Additionally, LRP1 plays a key function in the regulation of insulin receptor (IR) and glucose transporter type 4 (GLUT4) activities. Nevertheless, the link between LRP1, CE accumulation, and insulin response has not been previously studied in cardiomyocytes. We aimed to identify mechanisms through which aggLDL, by its interaction with LRP1, produce CE accumulation and affects the insulin-induced intracellular signaling and GLUT4 trafficking in HL-1 cells. We demonstrated that LRP1 mediates the endocytosis of aggLDL and promotes CE accumulation in these cells. Moreover, aggLDL reduced the molecular association between IR and LRP1 and impaired insulin-induced intracellular signaling activation. Finally, aggLDL affected GLUT4 translocation to the plasma membrane and the 2-NBDG uptake in insulin-stimulated cells. We conclude that LRP1 is a key regulator of the insulin response, which can be altered by CE accumulation through LRP1-mediated aggLDL endocytosis.


LRP1 mediates the IGF-1-induced GLUT1 expression on the cell surface and glucose uptake in Müller glial cells.

  • Virginia Actis Dato‎ et al.
  • Scientific reports‎
  • 2021‎

Insulin-like Growth Factor-1 (IGF-1) is involved in the normal development and survival of retinal cells. Low-density lipoprotein Receptor-related Protein-1 (LRP1) plays a key role on the regulation of several membrane proteins, such as the IGF-1 receptor (IGF-1R). In brain astrocytes, LRP1 interact with IGF-1R and the glucose transporter type 1 (GLUT1), regulating the glucose uptake in these cells. Although GLUT1 is expressed in retinal Müller Glial Cells (MGCs), its regulation is not clear yet. Here, we investigated whether IGF-1 modulates GLUT1 traffic to plasma membrane (PM) and glucose uptake, as well as the involvement of LRP1 in this process in the human Müller glial-derived cell line (MIO-M1). We found that IGF-1 produced GLUT1 translocation to the PM, in a time-dependent manner involving the intracellular signaling activation of MAPK/ERK and PI3K/Akt pathways, and generated a significant glucose uptake. Moreover, we found a molecular association between LRP1 and GLUT1, which was significantly reduced by IGF-1. Finally, cells treated with specific siRNA for LRP1 showed an impaired GLUT1 expression on PM and decreased glucose uptake induced by IGF-1. We conclude that IGF-1 regulates glucose homeostasis in MGCs involving the expression of LRP1.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: