Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

Adenosine A2A receptors format long-term depression and memory strategies in a mouse model of Angelman syndrome.

  • Ana Moreira-de-Sá‎ et al.
  • Neurobiology of disease‎
  • 2020‎

Angelman syndrome (AS) is a neurodevelopmental disorder caused by loss of function of the maternally inherited Ube3a neuronal protein, whose main features comprise severe intellectual disabilities and motor impairments. Previous studies with the Ube3am-/p+ mouse model of AS revealed deficits in synaptic plasticity and memory. Since adenosine A2A receptors (A2AR) are powerful modulators of aberrant synaptic plasticity and A2AR blockade prevents memory dysfunction in various brain diseases, we tested if A2AR could control deficits of memory and hippocampal synaptic plasticity in AS. We observed that Ube3am-/p+ mice were unable to resort to hippocampal-dependent search strategies when tested for learning and memory in the Morris water maze; this was associated with a decreased magnitude of long-term depression (LTD) in CA1 hippocampal circuits. There was an increased density of A2AR in the hippocampus of Ube3am-/p+ mice and their chronic treatment with the selective A2AR antagonist SCH58261 (0.1 mg/kg/day, ip) restored both hippocampal-dependent learning strategies, as well as LTD deficits. Altogether, this study provides the first evidence of a role of A2AR as a new prospective therapeutic target to manage learning deficits in AS.


Parkinson's disease-associated GPR37 receptor regulates cocaine-mediated synaptic depression in corticostriatal synapses.

  • Daniel Rial‎ et al.
  • Neuroscience letters‎
  • 2017‎

GPR37 is an orphan G protein-coupled receptor highly expressed in the brain. The precise function of GPR37 is still unknown, but a number of evidences indicate it modulates the dopaminergic system. Here, we aimed to determine the role of GPR37 on the control of cocaine-mediated electrophysiological effects (synaptic transmission and short-term plasticity) in corticostriatal synapses. Accordingly, we evaluated basal synaptic transmission and paired-pulse stimulation (PPS) in wild-type and GPR37KO mice slices. Regardless of the genotype, a low concentration of cocaine (2μM) did not modify basal synaptic transmission. Conversely, a higher dose of cocaine (30μM) decreased synaptic transmission in both genotypes, although with different intensities: approximately 30% in slices from wild-type mice and 45% in slices from GPR37-KO mice. On the other hand, no differences in PPS ratio were observed between wild-type and GPR37-KO cocaine-treated mice. Overall, our data suggest that GPR37 is involved in cocaine-induced modification of basal synaptic transmission without modifying cocaine effects in short-term plasticity.


Astrocytic A2A receptors silencing negatively impacts hippocampal synaptic plasticity and memory of adult mice.

  • Daniela Madeira‎ et al.
  • Glia‎
  • 2023‎

Astrocytes are wired to bidirectionally communicate with neurons namely with synapses, thus shaping synaptic plasticity, which in the hippocampus is considered to underlie learning and memory. Adenosine A2A receptors (A2A R) are a potential candidate to modulate this bidirectional communication, since A2A R regulate synaptic plasticity and memory and also control key astrocytic functions. Nonetheless, little is known about the role of astrocytic A2A R in synaptic plasticity and hippocampal-dependent memory. Here, we investigated the impact of genetic silencing astrocytic A2A R on hippocampal synaptic plasticity and memory of adult mice. The genetic A2A R silencing in astrocytes was accomplished by a bilateral injection into the CA1 hippocampal area of a viral construct (AAV5-GFAP-GFP-Cre) that inactivate A2A R expression in astrocytes of male adult mice carrying "floxed" A2A R gene, as confirmed by A2A R binding assays. Astrocytic A2A R silencing alters astrocytic morphology, typified by an increment of astrocytic arbor complexity, and led to deficits in spatial reference memory and compromised hippocampal synaptic plasticity, typified by a reduction of LTP magnitude and a shift of synaptic long-term depression (LTD) toward LTP. These data indicate that astrocytic A2A R control astrocytic morphology and influence hippocampal synaptic plasticity and memory of adult mice in a manner different from neuronal A2A R.


Adenosine A1 and A2A receptors differently control synaptic plasticity in the mouse dorsal and ventral hippocampus.

  • Sara L Reis‎ et al.
  • Journal of neurochemistry‎
  • 2019‎

The hippocampus is a brain region involved in processing both memory and emotions, through a preferential involvement of the dorsal hippocampus (DH) and ventral hippocampus (VH), respectively. Adenosine A1 and A2A receptors (A1 R and A2A R) control both mood and memory, but it is not known if there is a different adenosine modulation of synaptic plasticity along the hippocampal axis. Using adult, C57BL/6 male mice, we show that both A1 R and A2A R were more abundant in DH compared with VH. However, recordings of field excitatory postsynaptic potentials at Schaffer collaterals-CA1 pyramidal synapses revealed that A1 R were equi-effective to inhibit basal excitatory synaptic transmission in DH and VH, but endogenous A1 R activation was more effective to depress the probability of release in VH. In contrast, the selective A2A R antagonist (SCH58261, 50 nM) controlled both long-term potentiation (induced by a high frequency stimulation protocol) and long-term depression (induced by a low frequency stimulation protocol) selectively in DH rather than VH, whereas the selective A1 R antagonist (DPCPX, 100 nM) revealed a similar tonic inhibition of long-term depression in DH and VH. These findings show a different control of synaptic plasticity by the adenosine modulation system in the dorsal and ventral poles of the hippocampus, which may underlie a different efficiency of the adenosine system to control mood and memory.


Adenosine A2A Receptors Control Glutamatergic Synaptic Plasticity in Fast Spiking Interneurons of the Prefrontal Cortex.

  • Amber Kerkhofs‎ et al.
  • Frontiers in pharmacology‎
  • 2018‎

Adenosine A2A receptors (A2AR) are activated upon increased synaptic activity to assist in the implementation of long-term plastic changes at synapses. While it is reported that A2AR are involved in the control of prefrontal cortex (PFC)-dependent behavior such as working memory, reversal learning and effort-based decision making, it is not known whether A2AR control glutamatergic synapse plasticity within the medial PFC (mPFC). To elucidate that, we tested whether A2AR blockade affects long-term plasticity (LTP) of excitatory post-synaptic potentials in pyramidal neurons and fast spiking (FS) interneurons in layer 5 of the mPFC and of population spikes. Our results show that A2AR are enriched at mPFC synapses, where their blockade reversed the direction of plasticity at excitatory synapses onto layer 5 FS interneurons from LTP to long-term depression, while their blockade had no effect on the induction of LTP at excitatory synapses onto layer 5 pyramidal neurons. At the network level, extracellularly induced LTP of population spikes was reduced by A2AR blockade. The interneuron-specificity of A2AR in controlling glutamatergic synapse LTP may ensure that during periods of high synaptic activity, a proper excitation/inhibition balance is maintained within the mPFC.


l-α-aminoadipate causes astrocyte pathology with negative impact on mouse hippocampal synaptic plasticity and memory.

  • Marlene F Pereira‎ et al.
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology‎
  • 2021‎

Increasing evidence shows that astrocytes, by releasing and uptaking neuroactive molecules, regulate synaptic plasticity, considered the neurophysiological basis of memory. This study investigated the impact of l-α-aminoadipate (l-AA) on astrocytes which sense and respond to stimuli at the synaptic level and modulate hippocampal long-term potentiation (LTP) and memory. l-AA selectivity toward astrocytes was proposed in the early 70's and further tested in different systems. Although it has been used for impairing the astrocytic function, its effects appear to be variable in different brain regions. To test the effects of l-AA in the hippocampus of male C57Bl/6 mice we performed two different treatments (ex vivo and in vivo) and took advantage of other compounds that were reported to affect astrocytes. l-AA superfusion did not affect the basal synaptic transmission but decreased LTP magnitude. Likewise, trifluoroacetate and dihydrokainate decreased LTP magnitude and occluded the effect of l-AA on synaptic plasticity, confirming l-AA selectivity. l-AA superfusion altered astrocyte morphology, increasing the length and complexity of their processes. In vivo, l-AA intracerebroventricular injection not only reduced the astrocytic markers but also LTP magnitude and impaired hippocampal-dependent memory in mice. Interestingly, d-serine administration recovered hippocampal LTP reduction triggered by l-AA (2 h exposure in hippocampal slices), whereas in mice injected with l-AA, the superfusion of d-serine did not fully rescue LTP magnitude. Overall, these data show that both l-AA treatments affect astrocytes differently, astrocytic activation or loss, with similar negative outcomes on hippocampal LTP, implying that opposite astrocytic adaptive alterations are equally detrimental for synaptic plasticity.


Impact of blunting astrocyte activity on hippocampal synaptic plasticity in a mouse model of early Alzheimer's disease based on amyloid-β peptide exposure.

  • Cátia R Lopes‎ et al.
  • Journal of neurochemistry‎
  • 2022‎

Amyloid-β peptides (Aβ) accumulate in the brain since early Alzheimer's disease (AD) and dysregulate hippocampal synaptic plasticity, the neurophysiological basis of memory. Although the relationship between long-term potentiation (LTP) and memory processes is well established, there is also evidence that long-term depression (LTD) may be crucial for learning and memory. Alterations in synaptic plasticity, namely in LTP, can be due to communication failures between astrocytes and neurons; however, little is known about astrocytes' ability to control hippocampal LTD, particularly in AD-like conditions. We now aimed to test the involvement of astrocytes in changes of hippocampal LTP and LTD triggered by Aβ1-42 , taking advantage of L-α-aminoadipate (L-AA), a gliotoxin that blunts astrocytic function. The effects of Aβ1-42 exposure were tested in two different experimental paradigms: ex vivo (hippocampal slices superfusion) and in vivo (intracerebroventricular injection), which were previously validated to impair memory and hippocampal synaptic plasticity, two features of early AD. Blunting astrocytic function with L-AA reduced LTP and LTD amplitude in hippocampal slices from control mice, but the effect on LTD was less evident, suggesting that astrocytes have a greater influence on LTP than on LTD under non-pathological conditions. However, under AD conditions, blunting astrocytes did not consistently alter the reduction of LTP magnitude, but reverted the LTD-to-LTP shift caused by both ex vivo and in vivo Aβ1-42 exposure. This shows that astrocytes were responsible for the hippocampal LTD-to-LTP shift observed in early AD conditions, reinforcing the interest of strategies targeting astrocytes to restore memory and synaptic plasticity deficits present in early AD.


Increased Synaptic ATP Release and CD73-Mediated Formation of Extracellular Adenosine in the Control of Behavioral and Electrophysiological Modifications Caused by Chronic Stress.

  • Liliana Dias‎ et al.
  • ACS chemical neuroscience‎
  • 2023‎

Increased ATP release and its extracellular catabolism through CD73 (ecto-5'-nucleotidase) lead to the overactivation of adenosine A2A receptors (A2AR), which occurs in different brain disorders. A2AR blockade blunts mood and memory dysfunction caused by repeated stress, but it is unknown if increased ATP release coupled to CD73-mediated formation of extracellular adenosine is responsible for A2AR overactivation upon repeated stress. This was now investigated in adult rats subject to repeated stress for 14 consecutive days. Frontocortical and hippocampal synaptosomes from stressed rats displayed an increased release of ATP upon depolarization, coupled to an increased density of vesicular nucleotide transporters and of CD73. The continuous intracerebroventricular delivery of the CD73 inhibitor α,β-methylene ADP (AOPCP, 100 μM) during restraint stress attenuated mood and memory dysfunction. Slice electrophysiological recordings showed that restraint stress decreased long-term potentiation both in prefrontocortical layer II/III-layer V synapses and in hippocampal Schaffer fibers-CA1 pyramid synapses, which was prevented by AOPCP, an effect occluded by adenosine deaminase and by the A2AR antagonist SCH58261. These results indicate that increased synaptic ATP release coupled to CD73-mediated formation of extracellular adenosine contributes to mood and memory dysfunction triggered by repeated restraint stress. This prompts considering interventions decreasing ATP release and CD73 activity as novel strategies to mitigate the burden of repeated stress.


The impact of inosine on hippocampal synaptic transmission and plasticity involves the release of adenosine through equilibrative nucleoside transporters rather than the direct activation of adenosine receptors.

  • Pedro Valada‎ et al.
  • Purinergic signalling‎
  • 2023‎

Inosine has robust neuroprotective effects, but it is unclear if inosine acts as direct ligand of adenosine receptors or if it triggers metabolic effects indirectly modifying the activity of adenosine receptors. We now combined radioligand binding studies with electrophysiological recordings in hippocampal slices to test how inosine controls synaptic transmission and plasticity. Inosine was without effect at 30 μM and decreased field excitatory post-synaptic potentials by 14% and 33% at 100 and 300 μM, respectively. These effects were prevented by the adenosine A1 receptor antagonist DPCPX. Inosine at 300 (but not 100) μM also decreased the magnitude of long-term potentiation (LTP), an effect prevented by DPCPX and by the adenosine A2A receptor antagonist SCH58261. Inosine showed low affinity towards human and rat adenosine receptor subtypes with Ki values of > 300 µM; only at the human and rat A1 receptor slightly higher affinities with Ki values of around 100 µM were observed. Affinity of inosine at the rat A3 receptor was higher (Ki of 1.37 µM), while it showed no interaction with the human orthologue. Notably, the effects of inosine on synaptic transmission and plasticity were abrogated by adenosine deaminase and by inhibiting equilibrative nucleoside transporters (ENT) with dipyridamole and NBTI. This shows that the impact of inosine on hippocampal synaptic transmission and plasticity is not due to a direct activation of adenosine receptors but is instead due to an indirect modification of the tonic activation of these adenosine receptors through an ENT-mediated modification of the extracellular levels of adenosine.


Neuromodulation and neuroprotective effects of chlorogenic acids in excitatory synapses of mouse hippocampal slices.

  • Mara Yone D Fernandes‎ et al.
  • Scientific reports‎
  • 2021‎

The increased healthspan afforded by coffee intake provides novel opportunities to identify new therapeutic strategies. Caffeine has been proposed to afford benefits through adenosine A2A receptors, which can control synaptic dysfunction underlying some brain disease. However, decaffeinated coffee and other main components of coffee such as chlorogenic acids, also attenuate brain dysfunction, although it is unknown if they control synaptic function. We now used electrophysiological recordings in mouse hippocampal slices to test if realistic concentrations of chlorogenic acids directly affect synaptic transmission and plasticity. 3-(3,4-dihydroxycinnamoyl)quinic acid (CA, 1-10 μM) and 5-O-(trans-3,4-dihydroxycinnamoyl)-D-quinic acid (NCA, 1-10 μM) were devoid of effect on synaptic transmission, paired-pulse facilitation or long-term potentiation (LTP) and long-term depression (LTD) in Schaffer collaterals-CA1 pyramidal synapses. However, CA and NCA increased the recovery of synaptic transmission upon re-oxygenation following 7 min of oxygen/glucose deprivation, an in vitro ischemia model. Also, CA and NCA attenuated the shift of LTD into LTP observed in hippocampal slices from animals with hippocampal-dependent memory deterioration after exposure to β-amyloid 1-42 (2 nmol, icv), in the context of Alzheimer's disease. These findings show that chlorogenic acids do not directly affect synaptic transmission and plasticity but can indirectly affect other cellular targets to correct synaptic dysfunction. Unraveling the molecular mechanisms of action of chlorogenic acids will allow the design of hitherto unrecognized novel neuroprotective strategies.


Adenosine A2A receptors control generalization of contextual fear in rats.

  • Ana P Simões‎ et al.
  • Translational psychiatry‎
  • 2023‎

Fear learning is essential to survival, but traumatic events may lead to abnormal fear consolidation and overgeneralization, triggering fear responses in safe environments, as occurs in post-traumatic stress disorder (PTSD). Adenosine A2A receptors (A2AR) control emotional memory and fear conditioning, but it is not known if they affect the consolidation and generalization of fear, which was now investigated. We now report that A2AR blockade through systemic administration of the A2AR antagonist SCH58261 immediately after contextual fear conditioning (within the consolidation window), accelerated fear generalization. Conversely, A2AR activation with CGS21680 decreased fear generalization. Ex vivo electrophysiological recordings of field excitatory post-synaptic potentials (fEPSPs) in CA3-CA1 synapses and of population spikes in the lateral amygdala (LA), showed that the effect of SCH58261 is associated with a reversion of fear conditioning-induced decrease of long-term potentiation (LTP) in the dorsal hippocampus (DH) and with increased amplitude of LA LTP in conditioned animals. These data suggest that A2AR are engaged during contextual fear consolidation, controlling long-term potentiation mechanisms in both DH and LA during fear consolidation, impacting on fear generalization; this supports targeting A2AR during fear consolidation to control aberrant fear processing in PTSD and other fear-related disorders.


Motor Deficits Coupled to Cerebellar and Striatal Alterations in Ube3am-/p+ Mice Modelling Angelman Syndrome Are Attenuated by Adenosine A2A Receptor Blockade.

  • Ana Moreira-de-Sá‎ et al.
  • Molecular neurobiology‎
  • 2021‎

Angelman syndrome (AS) is a neurogenetic disorder involving ataxia and motor dysfunction, resulting from the absence of the maternally inherited functional Ube3a protein in neurons. Since adenosine A2A receptor (A2AR) blockade relieves synaptic and motor impairments in Parkinson's or Machado-Joseph's diseases, we now tested if A2AR blockade was also effective in attenuating motor deficits in an AS (Ube3am-/p+) mouse model and if this involved correction of synaptic alterations in striatum and cerebellum. Chronic administration of the A2AR antagonist SCH58261 (0.1 mg/kg/day, ip) promoted motor learning of AS mice in the accelerating-rotarod task and rescued the grip strength impairment of AS animals. These motor impairments were accompanied by synaptic alterations in cerebellum and striatum typified by upregulation of synaptophysin and vesicular GABA transporters (vGAT) in the cerebellum of AS mice along with a downregulation of vGAT, vesicular glutamate transporter 1 (vGLUT1) and the dopamine active transporter in AS striatum. Notably, A2AR blockade prevented the synaptic alterations found in AS mice cerebellum as well as the downregulation of striatal vGAT and vGLUT1. This provides the first indications that A2AR blockade may counteract the characteristic motor impairments and synaptic changes of AS, although more studies are needed to unravel the underlying mechanisms.


Impact of Caffeine Consumption on Type 2 Diabetes-Induced Spatial Memory Impairment and Neurochemical Alterations in the Hippocampus.

  • João M N Duarte‎ et al.
  • Frontiers in neuroscience‎
  • 2018‎

Diabetes affects the morphology and plasticity of the hippocampus, and leads to learning and memory deficits. Caffeine has been proposed to prevent memory impairment upon multiple chronic disorders with neurological involvement. We tested whether long-term caffeine consumption prevents type 2 diabetes (T2D)-induced spatial memory impairment and hippocampal alterations, including synaptic degeneration, astrogliosis, and metabolic modifications. Control Wistar rats and Goto-Kakizaki (GK) rats that develop T2D were treated with caffeine (1 g/L in drinking water) for 4 months. Spatial memory was evaluated in a Y-maze. Hippocampal metabolic profile and glucose homeostasis were investigated by 1H magnetic resonance spectroscopy. The density of neuronal, synaptic, and glial-specific markers was evaluated by Western blot analysis. GK rats displayed reduced Y-maze spontaneous alternation and a lower amplitude of hippocampal long-term potentiation when compared to controls, suggesting impaired hippocampal-dependent spatial memory. Diabetes did not impact the relation of hippocampal to plasma glucose concentrations, but altered the neurochemical profile of the hippocampus, such as increased in levels of the osmolites taurine (P < 0.001) and myo-inositol (P < 0.05). The diabetic hippocampus showed decreased density of the presynaptic proteins synaptophysin (P < 0.05) and SNAP25 (P < 0.05), suggesting synaptic degeneration, and increased GFAP (P < 0.001) and vimentin (P < 0.05) immunoreactivities that are indicative of astrogliosis. The effects of caffeine intake on hippocampal metabolism added to those of T2D, namely reducing myo-inositol levels (P < 0.001) and further increasing taurine levels (P < 0.05). Caffeine prevented T2D-induced alterations of GFAP, vimentin and SNAP25, and improved memory deficits. We conclude that caffeine consumption has beneficial effects counteracting alterations in the hippocampus of GK rats, leading to the improvement of T2D-associated memory impairment.


Chronic adenosine A2A receptor blockade induces locomotor sensitization and potentiates striatal LTD IN GPR37-deficient mice.

  • Xavier Morató‎ et al.
  • Journal of neurochemistry‎
  • 2019‎

Adenosine A2A receptors (A2A R) play a key role in modulating dopamine-dependent locomotor activity, as heralded by the sensitization of locomotor activity upon chronic A2A R blockade, which is associated with elevated dopamine levels and altered corticostriatal synaptic plasticity. Since the orphan receptor GPR37 has been shown to modulate A2A R function in vivo, we aimed to test whether the A2A R-mediated sensitization of locomotor activity is GPR37-dependent and involves adaptations of synaptic plasticity. To this end, we administered a selective A2A R antagonist, SCH58261 (1 mg/kg, i.p.), daily for 14 days, and the locomotor sensitization, striatum-dependent cued learning, and corticostriatal synaptic plasticity (i.e., long-term depression) were compared in wild-type and GPR37-/- mice. Notably, GPR37 deletion promoted A2A R-associated locomotor sensitization but not striatum-dependent cued learning revealed upon chronic SCH58261 treatment of mice. Furthermore, chronic A2A R blockade potentiated striatal long-term depression in corticostriatal synapses of GPR37-/- but not of wild-type mice, thus correlating well with neurochemical alterations of the adenosinergic system. Overall, these results revealed the importance of GPR37 regulating A2A R-dependent locomotor sensitization and synaptic plasticity in the basal ganglia circuitry. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/.


Inactivation of adenosine A2A receptors reverses working memory deficits at early stages of Huntington's disease models.

  • Wei Li‎ et al.
  • Neurobiology of disease‎
  • 2015‎

Cognitive impairments in Huntington's disease (HD) are attributed to a dysfunction of the cortico-striatal pathway and significantly affect the quality of life of the patients, but this has not been a therapeutic focus in HD to date. We postulated that adenosine A(2A) receptors (A(2A)R), located at pre- and post-synaptic elements of the cortico-striatal pathways, modulate striatal neurotransmission and synaptic plasticity and cognitive behaviors. To critically evaluate the ability of A(2A)R inactivation to prevent cognitive deficits in early HD, we cross-bred A(2A)R knockout (KO) mice with two R6/2 transgenic lines of HD (CAG120 and CAG240) to generate two double transgenic R6/2-CAG120-A(2A)R KO and R6/2-CAG240-A(2A)R KO mice and their corresponding wild-type (WT) littermates. Genetic inactivation of A(2A)R prevented working memory deficits induced by R6/2-CAG120 at post-natal week 6 and by R6/2-CAG240 at post-natal month 2 and post-natal month 3, without modifying motor deficits. Similarly the A2(A)R antagonist KW6002 selectively reverted working memory deficits in R6/2-CAG240 mice at post-natal month 3. The search for possible mechanisms indicated that the genetic inactivation of A(2A)R did not affect ubiquitin-positive neuronal inclusions, astrogliosis or Thr-75 phosphorylation of DARPP-32 in the striatum. Importantly, A(2A)R blockade preferentially controlled long-term depression at cortico-striatal synapses in R6/2-CAG240 at post-natal week 6. The reported reversal of working memory deficits in R6/2 mice by the genetic and pharmacological inactivation of A(2A)R provides a proof-of-principle for A(2A)R as novel targets to reverse cognitive deficits in HD, likely by controlling LTD deregulation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: