Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 55 papers

Dysregulated lipid metabolism blunts the sensitivity of cancer cells to EZH2 inhibitor.

  • Tengrui Zhang‎ et al.
  • EBioMedicine‎
  • 2022‎

Sensitivity has been a key issue for Enhancer of zeste homolog 2 (EZH2) inhibitors in cancer therapy. The EZH2 inhibitor EPZ-6438 was first approved by the US Food and Drug Administration (FDA) in 2020. However, its inadequate anti-cancer activity in solid tumors limits its clinical application. In this study, we utilized the multiple cancer cell lines, which are less sensitive to the EZH2 inhibitor GSK126, combining animal model and clinical data to investigate the underlying mechanism.


AFB1 Induced Transcriptional Regulation Related to Apoptosis and Lipid Metabolism in Liver of Chicken.

  • Xueqin Liu‎ et al.
  • Toxins‎
  • 2020‎

Aflatoxin B1 (AFB1) leads to a major risk to poultry and its residues in meat products can also pose serious threat to human health. In this study, after feeding 165-day-old Roman laying hens for 35 days, the toxic effects of aflatoxin B1 at different concentrations were evaluated. The purpose of this study was to explore the mechanism of liver toxicosis responses to AFB1. We found that highly toxic group exposure resulted in liver fat deposition, increased interstitial space, and hepatocyte apoptosis in laying hens. Furthermore, a total of 164 differentially expressed lnRNAs and 186 differentially expressed genes were found to be highly correlated (Pearson Correlation Coefficient > 0.80, p-value < 0.05) by sequencing the transcriptome of control (CB) and highly toxic group (TB3) chickens. We also identify 29 differentially expressed genes and 19 miRNAs that have targeted regulatory relationships. Based on the liver cell apoptosis and fatty liver syndrome that this research focused on, we found that the highly toxic AFB1 led to dysregulation of the expression of PPARG and BCL6. They are cis-regulated by TU10057 and TU45776, respectively. PPARG was the target gene of gga-miR-301a-3p, gga-miR-301b-3p, and BCL6 was the target gene of gga-miR-190a-3p. In summary, highly toxic AFB1 affects the expression levels of protein-coding genes and miRNAs in the liver of Roman layer hens, as well as the expression level of long non-coding RNA in the liver, which upregulates the expression of PPARG and downregulates the expression of Bcl-6. Our study provides information on possible genetic regulatory networks in AFB1-induced hepatic fat deposition and hepatocyte apoptosis.


2,3-Oxidosqualene cyclase protects liver cells from the injury of intermittent hypoxia by regulating lipid metabolism.

  • Yue-Qiao Zhen‎ et al.
  • Sleep & breathing = Schlaf & Atmung‎
  • 2015‎

2,3-Oxidosqualene cyclase (OSC), an important enzyme of cholesterol biosynthesis, catalyzes the highly selective cyclization of 2,3-monoepoxysqualene to lanosterol. Intermittent hypoxia (IH) is a hallmark feature in obstructive sleep apnea (OSA) which is increasingly recognized as an independent risk factor for liver injury. The aim of this study was to determine the effect of IH on OSC expression and evaluate the role of OSC in the IH-induced apoptosis in hepatic cell line human liver cell (HL-02).


Deficiency of Histone Methyltransferase SET Domain-Containing 2 in Liver Leads to Abnormal Lipid Metabolism and HCC.

  • Xue-Jing Li‎ et al.
  • Hepatology (Baltimore, Md.)‎
  • 2021‎

Trimethylation of Lys36 on histone 3 (H3K36me3) catalyzed by histone methyltransferase SET domain-containing 2 (SETD2) is one of the most conserved epigenetic marks from yeast to mammals. SETD2 is frequently mutated in multiple cancers and acts as a tumor suppressor.


Low Molecular Weight Fucoidan Can Inhibit the Fibrosis of Diabetic Kidneys by Regulating the Kidney Lipid Metabolism.

  • Yan Wang‎ et al.
  • Journal of diabetes research‎
  • 2021‎

In this study, a diabetic kidney disease model was established by placing the test rats on a high-sugar/high-fat diet combined with streptozotocin induction. Histopathological examination (H&E, Masson, and PASM stain) showed pathological changes in the diabetic rat kidneys, in addition to fibrotic symptoms and collagen deposition. Immunohistochemistry and western blot analyses indicated that the diabetic condition significantly increased the expressions of fibrotic markers including collagen, α-SMA, and fibronectin. The levels of cholesterol, triglyceride, and low-density lipoprotein were also increased in diabetic kidney disease (DKD) rat blood, while the level of high-density lipoprotein was decreased. The results of Oil red O staining experiments indicated that the kidneys of diabetic rats exhibited appreciable fat deposition, with high contents of triglyceride and cholesterol. To inhibit fibrosis and reduce fat deposition, low molecular weight fucoidan (LMWF) may be used. Based on PCR and western blot analyses, LMWF can regulate the expression levels of important lipid metabolism regulators, thereby impeding the development of kidney fibrosis. Through the vitro model, it also be indicated that LMWF could inhibit fibrosis process through regulating lipid metabolism which induced by palmitic acid.


Pathogenesis of Abnormal Hepatic Lipid Metabolism Induced by Chronic Intermittent Hypoxia in Rats and the Therapeutic Effect of N-Acetylcysteine.

  • Haipeng Wang‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2018‎

BACKGROUND The pathogenesis of chronic intermittent hypoxia (CIH)-induced abnormal hepatic lipid metabolism in rats remains unclear. Here, we investigated the therapeutic effect of N-acetylcysteine (NAC) on abnormal hepatic lipid metabolism. MATERIAL AND METHODS Rats were subjected to hypoxia and NAC treatment, and evaluated in terms of hepatic lipid metabolism, hepatocyte ultrastructure, oxidative stress in hepatocytes, expression of nuclear factor-kappa B (NF-κB) and inflammatory cytokines (IL-1β, IL-6, and TNFα), serum lipoprotein lipase (LPL) levels, and blood lipids (triglycerides and cholesterol). RESULTS Compared to the normoxic control group, animals in the hypoxic model group showed significant body weight gain; abnormal hepatic lipid metabolism; lipid vacuolization; accumulation of lipid droplets; abundant autophagosomes and lysosomes; significant increases in oxidative stress, inflammation level, and blood lipid levels; and significantly reduced LPL levels. Compared to control animals, rats in the treatment group exhibited normal body weight gain, improved lipid metabolism, fewer lipid droplets, alleviated ultrastructural injuries, decreased oxidative stress and inflammation level, as well as elevated LPL and reduced blood lipid levels. CONCLUSIONS The harmful effects of CIH on rat liver are possibly associated with the reactive oxygen species (ROS)/NF-κB signaling pathway. NAC is capable of attenuating lipid metabolism alterations and abnormal body weight gain in the CIH rat model, via a possible mechanism related to inhibition of ROS/NF-κB signaling.


High Expression of ACOT2 Predicts Worse Overall Survival and Abnormal Lipid Metabolism: A Potential Target for Acute Myeloid Leukemia.

  • Xuewei Yin‎ et al.
  • Journal of healthcare engineering‎
  • 2022‎

Acyl-CoA thioesterase (ACOT) plays a considerable role in lipid metabolism, which is closely related to the occurrence and development of cancer, nevertheless, its role has not been fully elucidated in acute myeloid leukemia (AML). To explore the role of ACOT2 in AML and to provide a potential therapeutic target for AML, the expression pattern of ACOT was investigated based on the TNMplot, Gene Expression Profiling Interactive Analysis (GEPIA), and Cancer Cell Line Encyclopedia (CCLE) database, and diagnostic value, prognostic value, and clinical phenotype of ACOT were explored based on data from The Cancer Genome Atlas (TCGA). Functional annotation and enrichment analysis of the common targets between ACOT2 coexpressed and AML-related genes were further performed by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) analyses. The protein-protein interaction (PPI) network of ACOT2 coexpressed genes and functional ACOT2-related metabolites association network were constructed based on GeneMANIA and Human Metabolome Database. Among ACOTs, ACOT2 was highly expressed in AML compared to normal control subjects according to TNMplot, GEPIA, and CCLE database, which was significantly associated with poor overall survival (OS) in AML (P=0.003). Moreover, ACOT2 exhibited excellent diagnostic efficiency for AML (AUC: 1.000) and related to French-American-British (FAB) classification and cytogenetics. GO, KEGG, and GSEA analyses of 71 common targets between ACOT2 coexpressed and AML-related genes revealed that ACOT2 is closely related to ACOT1, ACOT4, enoyl-acyl carrier protein reductase, mitochondrial (MECR), puromycin-sensitive aminopeptidase (NPEPPS), SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1 (SMARCB1), and long-chain fatty acid-CoA ligase 1 (ACSL1) in PPI network, and plays a significant role in lipid metabolism, that is, involved in fatty acid elongation and biosynthesis of unsaturated fatty acids. Collectively, the increase of ACOT2 may be an important characteristic of worse OS and abnormal lipid metabolism, suggesting that ACOT2 may become a potential therapeutic target for AML.


ALKBH5 enhances lipid metabolism reprogramming by increasing stability of FABP5 to promote pancreatic neuroendocrine neoplasms progression in an m6A-IGF2BP2-dependent manner.

  • Jinhao Chen‎ et al.
  • Journal of translational medicine‎
  • 2023‎

The process of post-transcriptional regulation has been recognized to be significantly impacted by the presence of N6-methyladenosine (m6A) modification. As an m6A demethylase, ALKBH5 has been shown to contribute to the progression of different cancers by increasing expression of several oncogenes. Hence, a better understanding of the key targets of ALKBH5 in cancer cells could potentially lead to the development of new therapeutic targets. However, the specific role of ALKBH5 in pancreatic neuroendocrine neoplasms (pNENs) remains largely unknown. Here, we demonstrated that ALKBH5 was up-regulated in pNENs and played a critical role in tumor growth and lipid metabolism. Mechanistically, ALKBH5 over-expression was found to increase the expression of FABP5 in an m6A-IGF2BP2 dependent manner, leading to disorders in lipid metabolism. Additionally, ALKBH5 was found to activate PI3K/Akt/mTOR signaling pathway, resulting in enhanced lipid metabolism and proliferation abilities. In conclusion, our study uncovers the ALKBH5/IGF2BP2/FABP5/mTOR axis as a mechanism for aberrant m6A modification in lipid metabolism and highlights a new molecular basis for the development of therapeutic strategies for pNENs treatment.


Dietary supplementation of salidroside alleviates liver lipid metabolism disorder and inflammatory response to promote hepatocyte regeneration via PI3K/AKT/Gsk3-β pathway.

  • Zhifu Cui‎ et al.
  • Poultry science‎
  • 2022‎

Fatty liver hemorrhagic syndrome (FLHS) is a chronic hepatic disease which occurs when there is a disorder in lipid metabolism. FLHS is often observed in caged laying hens and characterized by a decrease in egg production and dramatic increase of mortality. Salidroside (SDS) is an herbal drug which has shown numerous pharmacological activities, such as protecting mitochondrial function, attenuating cell apoptosis and inflammation, and promoting antioxidant defense system. We aimed to determine the therapeutic effects of SDS on FLHS in laying hens and investigate the underlying mechanisms through which SDS operates these functions. We constructed oleic acid (OA)-induced fatty liver model in vitro and high-fat diet-induced FLHS of laying hens in vivo. The results indicated that SDS inhibited OA-induced lipid accumulation in chicken primary hepatocytes, increased hepatocyte activity, elevated the mRNA expression of proliferation related genes PCNA, CDK2, and cyclinD1 and increased the protein levels of PCNA and CDK2 (P < 0.05), as well as decreased the cleavage levels of Caspase-9, Caspase-8, and Caspase-3 and apoptosis in hepatocytes (P < 0.05). Moreover, SDS promoted the phosphorylation levels of PDK1, AKT, and Gsk3-β, while inhibited the PI3K inhibitor (P < 0.05). Additionally, we found that high-fat diet-induced FLHS hens had heavier body weight, liver weight, and abdominal fat weight, and severe steatosis in histology, compared with the control group (Con). However, hens fed with SDS maintained lighter body weight, liver weight, and abdominal fat weight, as well as normal liver without hepatic steatosis. In addition, high-fat diet-induced FLHS hens had high levels of serum total cholesterol (TC), triglyceride (TG), alanine transaminase (ALT), and aspartate aminotransferase (AST) compared to the Con group, however, in the Model+SDS group, the levels of TC, TG, ALT, and AST decreased significantly, whereas the level of superoxide dismutase (SOD) increased significantly (P < 0.05). We also found that SDS significantly decreased the mRNA expression abundance of PPARγ, SCD, and FAS in the liver, as well as increased levels of PPARα and MTTP, and decreased the mRNA expression of TNF-α, IL-1β, IL-6, and IL-8 in the Model+SDS group (P < 0.05). In summary, this study showed that 0.3 mg/mL SDS attenuated ROS generation, inhibited lipid accumulation and hepatocyte apoptosis, and promoted hepatocyte proliferation by targeting the PI3K/AKT/Gsk3-β pathway in OA-induced fatty liver model in vitro, and 20 mg/kg SDS alleviated high-fat-diet-induced hepatic steatosis, oxidative stress, and inflammatory response in laying hens in vivo.


Progressions of the correlation between lipid metabolism and immune infiltration characteristics in gastric cancer and identification of BCHE as a potential biomarker.

  • Shibo Wang‎ et al.
  • Frontiers in immunology‎
  • 2024‎

Globally, gastric cancer (GC) is a category of prevalent malignant tumors. Its high occurrence and fatality rates represent a severe threat to public health. According to recent research, lipid metabolism (LM) reprogramming impacts immune cells' ordinary function and is critical for the onset and development of cancer. Consequently, the article conducted a sophisticated bioinformatics analysis to explore the potential connection between LM and GC.


Gut Microbiota Functional Biomolecules With Immune-Lipid Metabolism for a Prognostic Compound Score in Epstein-Barr Virus-Associated Gastric Adenocarcinoma: A Pilot Study.

  • Fang Wang‎ et al.
  • Clinical and translational gastroenterology‎
  • 2019‎

Increasing evidence has indicated an association between gut microbiota in gastrointestinal cancer and clinical outcome. Herein, we aim to develop a prognosis-prediction tool based on an immune-lipid metabolism signature, tumor cell-associated immune microenvironment, and lipid metabolism proteins inferred from the function of gut microbiota.


Effect of theaflavin-3,3'-digallate on leptin-deficient induced nonalcoholic fatty liver disease might be related to lipid metabolism regulated by the Fads1/PPARδ/Fabp4 axis and gut microbiota.

  • Cheng Zhou‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

Nonalcoholic fatty liver disease (NAFLD), one of the risk factors for hepatitis, cirrhosis, and even hepatic carcinoma, has been a global public health problem. The polyphenol compound theaflavin-3,3'-digallate (TF3), mainly extracted from black tea, has been reported to produce an effect on hypoglycemic and antilipid deposition in vitro. In our study, we further investigated the function and novel mechanisms of TF3 in protecting NAFLD in vivo. By using leptin-deficient obese (ob/ob) mice with NAFLD symptoms, TF3 treatment prevented body weight and waistline gain, reduced lipid accumulation, and alleviated liver function injury, as well as decreased serum lipid levels and TG levels in livers in ob/ob mice, observing no side effects. Furthermore, the transcriptome sequencing of liver tissue showed that TF3 treatment corrected the expression profiles of livers in ob/ob mice compared with that of the model group. It is interesting to note that TF3 might regulate lipid metabolism via the Fads1/PPARδ/Fabp4 axis. In addition, 16S rRNA sequencing demonstrated that TF3 increased the abundance of Prevotellaceae_UCG-001, norank_f_Ruminococcaceae, and GCA-900066575 and significantly decreased that of Parvibacter. Taken together, the effect of TF3 on NAFLD might be related to lipid metabolism regulated by the Fads1/PPARδ/Fabp4 axis and gut microbiota. TF3 might be a promising candidate for NAFLD therapy.


Interplay Among Metabolism, Epigenetic Modifications, and Gene Expression in Cancer.

  • Miaomiao Huo‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2021‎

Epigenetic modifications and metabolism are two fundamental biological processes. During tumorigenesis and cancer development both epigenetic and metabolic alterations occur and are often intertwined together. Epigenetic modifications contribute to metabolic reprogramming by modifying the transcriptional regulation of metabolic enzymes, which is crucial for glucose metabolism, lipid metabolism, and amino acid metabolism. Metabolites provide substrates for epigenetic modifications, including histone modification (methylation, acetylation, and phosphorylation), DNA and RNA methylation and non-coding RNAs. Simultaneously, some metabolites can also serve as substrates for nonhistone post-translational modifications that have an impact on the development of tumors. And metabolic enzymes also regulate epigenetic modifications independent of their metabolites. In addition, metabolites produced by gut microbiota influence host metabolism. Understanding the crosstalk among metabolism, epigenetic modifications, and gene expression in cancer may help researchers explore the mechanisms of carcinogenesis and progression to metastasis, thereby provide strategies for the prevention and therapy of cancer. In this review, we summarize the progress in the understanding of the interactions between cancer metabolism and epigenetics.


Receptor-Mediated ER Export of Lipoproteins Controls Lipid Homeostasis in Mice and Humans.

  • Xiao Wang‎ et al.
  • Cell metabolism‎
  • 2021‎

Efficient delivery of specific cargos in vivo poses a major challenge to the secretory pathway, which shuttles products encoded by ∼30% of the genome. Newly synthesized protein and lipid cargos embark on the secretory pathway via COPII-coated vesicles, assembled by the GTPase SAR1 on the endoplasmic reticulum (ER), but how lipid-carrying lipoproteins are distinguished from the general protein cargos in the ER and selectively secreted has not been clear. Here, we show that this process is quantitatively governed by the GTPase SAR1B and SURF4, a high-efficiency cargo receptor. While both genes are implicated in lipid regulation in humans, hepatic inactivation of either mouse Sar1b or Surf4 selectively depletes plasma lipids to near-zero and protects the mice from atherosclerosis. These findings show that the pairing between SURF4 and SAR1B synergistically operates a specialized, dosage-sensitive transport program for circulating lipids, while further suggesting a potential translation to treat atherosclerosis and related cardio-metabolic diseases.


Berberine-induced bioactive metabolites of the gut microbiota improve energy metabolism.

  • Yan Wang‎ et al.
  • Metabolism: clinical and experimental‎
  • 2017‎

Berberine (BBR) clinically lowers blood lipid and glucose levels via multi-target mechanisms. One of the possible mechanisms is related to its effect on the short chain fatty acids (SCFAs) of the gut microbiota. The goal of this study is to investigate the therapeutic effect and mode of action of BBR working through SCFAs of the gut microbiota (especially, butyrate).


Telmisartan attenuates human glioblastoma cells proliferation and oncogenicity by inducing the lipid oxidation.

  • Yan Wang‎ et al.
  • Asia-Pacific journal of clinical oncology‎
  • 2022‎

Glioblastoma (GBM) is one of the most common primary brain tumors, which accounts up to 80% of malignant brain tumors and the 5-year relative survival rate is below 5%. Recent studies showed that the lipid metabolism played an essential role in GBM development. As a peroxisome proliferators-activated receptors γ (PPAR-γ) agonist, telmisartan improves the lipid metabolism and has been used to treat hypertension for long time. It has also been shown to have anticancer function, such as in lung cancer and melanoma.


Hypercholesterolemia risk associated Abca6 does not regulate lipoprotein metabolism in mice or hamster.

  • Baoshen He‎ et al.
  • Biochimica et biophysica acta. Molecular and cell biology of lipids‎
  • 2021‎

Hypercholesterolemia has strong heritability and about 40-60% of hypercholesterolemia is caused by genetic risk factors. A number of monogenic genes have been identified so far for familial hypercholesterolemia (FH). However, in the general population, more than 90% of individuals with LDL cholesterol over 190 mg/dL do not carry known FH mutations. Large scale whole-exome sequencing has identified thousands of variants that are predicted to be loss-of-function (LoF) and each individual has a median of about twenty rare LoF variants and several hundreds more common LoF variants. However, majority of those variants have not been characterized and their functional consequence remains largely unknown. Rs77542162 is a common missense variant in ABCA6 and is strongly associated with hypercholesterolemia in different populations. ABCA6 is a cholesterol responsive gene and has been suggested to play a role in lipid metabolism. However, whether and how rs77542162 and ABCA6 regulate lipoprotein metabolism remain unknown. In current study, we systemically characterized the function of rs77542162 and ABCA6 in cultured cells and in vivo of rodents. We found that Abca6 is specifically expressed on the basolateral surface of hepatocytes in mouse liver. The rs77542162 variant disrupts ABCA6 protein stability and results in loss of functional protein. However, we found no evidence that Abca6 plays a role in lipoprotein metabolism in either normal mice or hypercholesterolemia mice or hamsters. Thus, our results suggest that Abca6 does not regulate lipoprotein metabolism in rodents and highlight the challenge and importance of functional characterization of disease-associated variants in animal models.


Inhibition of GSK3β Reduces Ectopic Lipid Accumulation and Induces Autophagy by the AMPK Pathway in Goat Muscle Satellite Cells.

  • Linjie Wang‎ et al.
  • Cells‎
  • 2019‎

Ectopic lipid accumulation in muscle is important not only for obesity and myopathy treatment, but also for meat quality improvement in farm animals. However, the molecular mechanisms involved in lipid metabolism in muscle satellite cells are still elusive. In this study, SB216763 reduced GSK3β activation by increasing the level of pGSK3β (Ser9) and decreasing the level of total GSK3β protein. GSK3β inhibition decreased lipid accumulation and downregulated the expression level of lipogenesis-related genes in the adipogenic differentiation of goat muscle satellite cells. Furthermore, SB216763 treatment increased the levels of pAMPKα (T172) and pACC (Ser79). Further, we found that GSK3β inhibition promoted levels of LC3B-II and reduced the protein levels of p62 to induce the autophagy in muscle satellite cells. Taken together, our results provide new insight into a critical function for GSK3β: modulating lipid accumulation in goat muscle satellite cells through activating the AMPK pathway.


Effect of Gegen Qinlian Decoction on Hepatic Gluconeogenesis in ZDF Rats with Type 2 Diabetes Mellitus Based on the Farnesol X Receptor/Ceramide Signaling Pathway Regulating Mitochondrial Metabolism and Endoplasmic Reticulum Stress.

  • Qi Zhou‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2021‎

Type 2 diabetes mellitus (T2DM) is a kind of disorder of glucose and lipid metabolism with the main clinical manifestation of long-term higher blood glucose level than the normal value. Farnesol X receptor (FXR)/ceramide signaling pathway plays an important role in regulating cholesterol metabolism, lipid homeostasis, and the absorption of fat and vitamins in diet. Gegen Qinlian Decoction (GQD) is a classical herbal formula, which has a good clinical therapeutic effect on diabetes-related metabolic syndrome.


Flaxseed oil ameliorated high-fat-diet-induced bone loss in rats by promoting osteoblastic function in rat primary osteoblasts.

  • Fulian Chen‎ et al.
  • Nutrition & metabolism‎
  • 2019‎

α-Linolenic acid (ALA) is a plant-derived omega-3 unsaturated fatty acid that is rich in flaxseed oil (FO). The effect of FO on bone health is controversial. This study aims to evaluate the effect of FO on bone damage induced by a high-fat diet (HFD) and to explore the possible mechanism.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: