2024MAY02: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 77 papers

Large-scale comparative epigenomics reveals hierarchical regulation of non-CG methylation in Arabidopsis.

  • Yu Zhang‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2018‎

Genome-wide characterization by next-generation sequencing has greatly improved our understanding of the landscape of epigenetic modifications. Since 2008, whole-genome bisulfite sequencing (WGBS) has become the gold standard for DNA methylation analysis, and a tremendous amount of WGBS data has been generated by the research community. However, the systematic comparison of DNA methylation profiles to identify regulatory mechanisms has yet to be fully explored. Here we reprocessed the raw data of over 500 publicly available Arabidopsis WGBS libraries from various mutant backgrounds, tissue types, and stress treatments and also filtered them based on sequencing depth and efficiency of bisulfite conversion. This enabled us to identify high-confidence differentially methylated regions (hcDMRs) by comparing each test library to over 50 high-quality wild-type controls. We developed statistical and quantitative measurements to analyze the overlapping of DMRs and to cluster libraries based on their effect on DNA methylation. In addition to confirming existing relationships, we revealed unanticipated connections between well-known genes. For instance, MET1 and CMT3 were found to be required for the maintenance of asymmetric CHH methylation at nonoverlapping regions of CMT2 targeted heterochromatin. Our comparative methylome approach has established a framework for extracting biological insights via large-scale comparison of methylomes and can also be adopted for other genomics datasets.


A Meta-Analysis of Robotic Surgery in Endometrial Cancer: Comparison with Laparoscopy and Laparotomy.

  • Jia Wang‎ et al.
  • Disease markers‎
  • 2020‎

The safety and effectiveness of robotic surgery are evaluated by comparing perioperative outcomes with laparoscopy and laparotomy in endometrial cancer.


Next-generation sequencing in the diagnosis of neurobrucellosis: a case series of eight consecutive patients.

  • Lili Yu‎ et al.
  • Annals of clinical microbiology and antimicrobials‎
  • 2023‎

Neurobrucellosis (NB) presents a challenge for rapid and specific diagnosis. Next-generation sequencing (NGS) of cerebrospinal fluid (CSF) has showed power in detection of causative pathogens, even some infrequent and unexpected pathogens. In this study, we presented 8 cases of NB diagnosed by the NGS of CSF.


Poly(A)-seq: A method for direct sequencing and analysis of the transcriptomic poly(A)-tails.

  • Fengyun Yu‎ et al.
  • PloS one‎
  • 2020‎

Poly(A) tails at the 3' end of eukaryotic messenger RNAs control mRNA stability and translation efficiency. Facilitated by various NGS methods, alternative polyadenylation sites determining the 3'-UTR length of gene transcripts have been extensively studied. However, poly(A) lengths demonstrating dynamic and developmental regulation remain largely unexplored. The recently developed NGS-based methods for genome-wide poly(A) profiling have promoted the study of genom-wide poly(A) dynamics. Here we present a straight forward NGS-method for poly(A) profiling, which applies a direct 3'-end adaptor ligation and the template switching for 5'-end adaptor ligation for cDNA library construction. Poly(A) lengths are directly calculated from base call data using a self-developed pipeline pA-finder. The libraries were directly sequenced from the 3'-UTR regions into the followed poly(A) tails, firstly on NextSeq 500 to produce single-end 300-nt reads, demonstrating the method feasibility and that optimization of the fragmented RNA size for cDNA library construction could detecting longer poly (A) tails. We next applied Poly(A)-seq cDNA libraries containing 40-nt and 120-nt poly(A) tail spike-in RNAs on HiSeq X-ten and NovaSeq 6000 to obtain 150-nt and 250-nt pair-end reads. The sequencing profiles of the spike-in RNAs demonstrated both high accuracy and high quality score in reading poly(A) tails. The poly(A) signal bleeding into the 3' adaptor sequence and a sharp decreased quality score at the junction were observed, allowing the modification of pA-finder to remove homopolymeric signal bleeding. We hope that wide applications of Poly(A)-seq help facilitate the study of the development- and disease-related poly(A) dynamics and regulation, and of the recent emerging mixed tailing regulation.


Chemical Constituents and Their Biological Activities from Genus Styrax.

  • Ding-Ding Xia‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2023‎

Plants from the genus Styrax have been extensively used in folk medicines to treat diseases such as skin diseases and peptic ulcers and as an antiseptic and analgesic. Most Styrax species, especially Styrax tonkinensis, which is used as an expectorant, antiseptic, and analgesic in Chinese traditional medicine, could screen resin after external injury. Styrax is also used in folk medicines in Korea to treat sore throat, bronchitis, cough, expectoration, paralysis, laryngitis, and inflammation. Different parts of various Styrax species can be widely employed for ethnopharmacological applications. Moreover, for ethnopharmacological use, these parts of Styrax species can be applied in combination with other folk medicines. Styrax species consist of versatile natural compounds, with some of them exhibiting particularly excellent pharmacological activities, such as cytotoxic, acetylcholinesterase inhibitory, antioxidant, and antifungal activities. Altogether, these exciting results indicate that a comprehensive review of plants belonging to this genus is essential for helping researchers to continuously conduct an in-depth investigation. In this review, the traditional uses, phytochemistry, corresponding pharmacological activities, and structure-activity relationships of different Styrax species are clarified and critically discussed. More insights into potential opportunities for future research are carefully assessed.


Orientation-specific joining of AID-initiated DNA breaks promotes antibody class switching.

  • Junchao Dong‎ et al.
  • Nature‎
  • 2015‎

During B-cell development, RAG endonuclease cleaves immunoglobulin heavy chain (IgH) V, D, and J gene segments and orchestrates their fusion as deletional events that assemble a V(D)J exon in the same transcriptional orientation as adjacent Cμ constant region exons. In mice, six additional sets of constant region exons (CHs) lie 100-200 kilobases downstream in the same transcriptional orientation as V(D)J and Cμ exons. Long repetitive switch (S) regions precede Cμ and downstream CHs. In mature B cells, class switch recombination (CSR) generates different antibody classes by replacing Cμ with a downstream CH (ref. 2). Activation-induced cytidine deaminase (AID) initiates CSR by promoting deamination lesions within Sμ and a downstream acceptor S region; these lesions are converted into DNA double-strand breaks (DSBs) by general DNA repair factors. Productive CSR must occur in a deletional orientation by joining the upstream end of an Sμ DSB to the downstream end of an acceptor S-region DSB. However, the relative frequency of deletional to inversional CSR junctions has not been measured. Thus, whether orientation-specific joining is a programmed mechanistic feature of CSR as it is for V(D)J recombination and, if so, how this is achieved is unknown. To address this question, we adapt high-throughput genome-wide translocation sequencing into a highly sensitive DSB end-joining assay and apply it to endogenous AID-initiated S-region DSBs in mouse B cells. We show that CSR is programmed to occur in a productive deletional orientation and does so via an unprecedented mechanism that involves in cis Igh organizational features in combination with frequent S-region DSBs initiated by AID. We further implicate ATM-dependent DSB-response factors in enforcing this mechanism and provide an explanation of why CSR is so reliant on the 53BP1 DSB-response factor.


Anti-Ovarian Cancer Conotoxins Identified from Conus Venom.

  • Shuang Ju‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

Conotoxins constitute a treasury of drug resources and have attracted widespread attention. In order to explore biological candidates from the marine cone snail, we isolated and identified three novel conopeptides named as Vi14b, Vi002, Vi003, three conotoxin variants named as Mr3d.1, Mr3e.1, Tx3a.1, and three known conotoxins (Vi15a, Mr3.8 and TCP) from crude venoms of Conus virgo, Conus marmoreus and Conus texile. Mr3.8 (I-V, II-VI, III-IV) and Tx3a.1 (I-III, II-VI, IV-V) both showed a novel pattern of disulfide connectivity, different from that previously established for the µ- and ψ-conotoxins. Concerning the effect on voltage-gated sodium channels, Mr3e.1, Mr3.8, Tx3a.1, TCP inhibited Nav1.4 or Nav1.8 by 21.51~24.32% of currents at semi-activated state (TP2) at 10 μmol/L. Certain anti-ovarian cancer effects on ID-8 cells were exhibited by Tx3a.1, Mr3e.1 and Vi14b with IC50 values of 24.29 µM, 54.97 µM and 111.6 µM, respectively. This work highlights the role of conotoxin libraries in subsequent drug discovery for ovarian cancer treatment.


Neutralizing Antibodies to SARS-CoV-2 Selected from a Human Antibody Library Constructed Decades Ago.

  • Min Qiang‎ et al.
  • Advanced science (Weinheim, Baden-Wurttemberg, Germany)‎
  • 2022‎

Combinatorial antibody libraries not only effectively reduce antibody discovery to a numbers game, but enable documentation of the history of antibody responses in an individual. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has prompted a wider application of this technology to meet the public health challenge of pandemic threats in the modern era. Herein, a combinatorial human antibody library constructed 20 years before the coronavirus disease 2019 (COVID-19) pandemic is used to discover three highly potent antibodies that selectively bind SARS-CoV-2 spike protein and neutralize authentic SARS-CoV-2 virus. Compared to neutralizing antibodies from COVID-19 patients with generally low somatic hypermutation (SHM), these three antibodies contain over 13-22 SHMs, many of which are involved in specific interactions in their crystal structures with SARS-CoV-2 spike receptor binding domain. The identification of these somatically mutated antibodies in a pre-pandemic library raises intriguing questions about the origin and evolution of these antibodies with respect to their reactivity with SARS-CoV-2.


The Genus Adonis as an Important Cardiac Folk Medicine: A Review of the Ethnobotany, Phytochemistry and Pharmacology.

  • Xiaofei Shang‎ et al.
  • Frontiers in pharmacology‎
  • 2019‎

The genus Adonis L. (Ranunculaceae), native to Europe and Asia, comprises 32 annual or perennial herbaceous species. Due to their cardiac-enhancing effects, Adonis spp. have long been used in European and Chinese folk medicine. These plants have been widely investigated since the late 19th century, when the cardiovascular activity of Adonis vernalis L. was noted in Europe. The present paper provides a review of the phytochemistry, biological activities and toxicology in order to highlight the future prospects of the genus. More than 120 chemical compounds have been isolated, with the most important components being cardiac glycosides as well as flavones, carotenoids, coumarins and other structural types. Plants of the genus, especially A. vernalis L. and A. amurensis Regel & Radde, their extracts and their active constituents possess broad pharmacological properties, including cardiovascular, antiangiogenic, antibacterial, antioxidant, anti-inflammatory and acaricidal activities, and exhibit both diuretic effects and effects on the central nervous system. However, most plants within the 32 species have not been comprehensively studied, and further clinical evaluation of their cardiovascular activity and toxicity should be conducted after addressing the problem of the rapidly decreasing resources. This review provides new insight into the genus and lays a solid foundation for further development of Adonis.


circGLI3 Inhibits Oxidative Stress by Regulating the miR-339-5p/VEGFA Axis in IPEC-J2 Cells.

  • Zhi-Xin Li‎ et al.
  • BioMed research international‎
  • 2021‎

As a new type of noncoding RNA, circular RNA (circRNA) is stable in cells and not easily degraded. This type of RNA can also competitively bind miRNAs to regulate the expression of their target genes. The role of circRNA in the mechanism of intestinal oxidative stress (OS) in weaned piglets is still unclear. In our research, diquat (DQ) was used to induce OS in small intestinal epithelial cells (IPEC-J2) to construct an OS cell model. Mechanistically, dual luciferase reporter assays, fluorescence in situ hybridization (FISH), and western blotting were performed to confirm that circGLI3 directly sponged miR-339-5p and regulated the expression of VEGFA. Overexpression of circGLI3 promoted IPEC-J2 cell proliferation, increased the proportion of S-phase cells (P < 0.01), and reduced reactive oxygen species (ROS) generation when IPEC-J2 cells were subjected to OS. circGLI3 can increase the activity of glutathione peroxidase (GSH-Px) and the total antioxidant capacity (T-AOC) in IPEC-J2 cells and reduce the malondialdehyde (MDA) content and levels of inflammatory factors. Therefore, overexpression of circGLI3 reduced oxidative damage, whereas miR-339-5p mimic counteracted these effects. We identified a regulatory network composed of circGLI3, miR-339-5p, and VEGFA and verified that circGLI3 regulates VEGFA by directly binding miR-339-5p. The expression of VEGFA affects IPEC-J2 cell proliferation, cell cycle progression, and ROS content and changes the levels of antioxidant enzymes and inflammatory factors. This study reveals the molecular mechanism by which circGLI3 inhibits OS in the intestine of piglets and provides a theoretical basis for further research on the effect of OS on intestinal function.


Identification of candidate reference genes in perennial ryegrass for quantitative RT-PCR under various abiotic stress conditions.

  • Linkai Huang‎ et al.
  • PloS one‎
  • 2014‎

Quantitative real-time reverse-transcriptase PCR (qRT-PCR) is an important technique for analyzing differences in gene expression due to its sensitivity, accuracy and specificity. However, the stability of the expression of reference genes is necessary to ensure accurate qRT-PCR assessment of expression in genes of interest. Perennial ryegrass (Lolium perenne L.) is important forage and turf grass species in temperate regions, but the expression stability of its reference genes under various stresses has not been well-studied.


The developmental transcriptome of Drosophila melanogaster.

  • Brenton R Graveley‎ et al.
  • Nature‎
  • 2011‎

Drosophila melanogaster is one of the most well studied genetic model organisms; nonetheless, its genome still contains unannotated coding and non-coding genes, transcripts, exons and RNA editing sites. Full discovery and annotation are pre-requisites for understanding how the regulation of transcription, splicing and RNA editing directs the development of this complex organism. Here we used RNA-Seq, tiling microarrays and cDNA sequencing to explore the transcriptome in 30 distinct developmental stages. We identified 111,195 new elements, including thousands of genes, coding and non-coding transcripts, exons, splicing and editing events, and inferred protein isoforms that previously eluded discovery using established experimental, prediction and conservation-based approaches. These data substantially expand the number of known transcribed elements in the Drosophila genome and provide a high-resolution view of transcriptome dynamics throughout development.


Phenotypic and Genomic Difference among Four Botryosphaeria Pathogens in Chinese Hickory Trunk Canker.

  • Tianling Ma‎ et al.
  • Journal of fungi (Basel, Switzerland)‎
  • 2023‎

Botryosphaeria species are amongst the most widespread and important canker and dieback pathogens of trees worldwide, with B. dothidea as one of the most common Botryosphaeria species. However, the information related to the widespread incidence and aggressiveness of B. dothidea among various Botryosphaeria species causing trunk cankers is still poorly investigated. In this study, the metabolic phenotypic diversity and genomic differences of four Chinese hickory canker-related Botryosphaeria pathogens, including B. dothidea, B. qingyuanensis, B. fabicerciana, and B. corticis, were systematically studied to address the competitive fitness of B. dothidea. Large-scale screening of physiologic traits using a phenotypic MicroArray/OmniLog system (PMs) found B. dothidea has a broader spectrum of nitrogen source and greater tolerance toward osmotic pressure (sodium benzoate) and alkali stress among Botryosphaeria species. Moreover, the annotation of B. dothidea species-specific genomic information via a comparative genomics analysis found 143 B. dothidea species-specific genes that not only provides crucial cues in the prediction of B. dothidea species-specific function but also give a basis for the development of a B. dothidea molecular identification method. A species-specific primer set Bd_11F/Bd_11R has been designed based on the sequence of B. dothidea species-specific gene jg11 for the accurate identification of B. dothidea in disease diagnoses. Overall, this study deepens the understanding in the widespread incidence and aggressiveness of B. dothidea among various Botryosphaeria species, providing valuable clues to assist in trunk cankers management.


Identification and analysis of genome-wide SNPs provide insight into signatures of selection and domestication in channel catfish (Ictalurus punctatus).

  • Luyang Sun‎ et al.
  • PloS one‎
  • 2014‎

Domestication and selection for important performance traits can impact the genome, which is most often reflected by reduced heterozygosity in and surrounding genes related to traits affected by selection. In this study, analysis of the genomic impact caused by domestication and artificial selection was conducted by investigating the signatures of selection using single nucleotide polymorphisms (SNPs) in channel catfish (Ictalurus punctatus). A total of 8.4 million candidate SNPs were identified by using next generation sequencing. On average, the channel catfish genome harbors one SNP per 116 bp. Approximately 6.6 million, 5.3 million, 4.9 million, 7.1 million and 6.7 million SNPs were detected in the Marion, Thompson, USDA103, Hatchery strain, and wild population, respectively. The allele frequencies of 407,861 SNPs differed significantly between the domestic and wild populations. With these SNPs, 23 genomic regions with putative selective sweeps were identified that included 11 genes. Although the function for the majority of the genes remain unknown in catfish, several genes with known function related to aquaculture performance traits were included in the regions with selective sweeps. These included hypoxia-inducible factor 1β. HIFιβ.. and the transporter gene ATP-binding cassette sub-family B member 5 (ABCB5). HIF1β. is important for response to hypoxia and tolerance to low oxygen levels is a critical aquaculture trait. The large numbers of SNPs identified from this study are valuable for the development of high-density SNP arrays for genetic and genomic studies of performance traits in catfish.


Using next-generation sequencing to analyze Helicobacter pylori clones with different levofloxacin resistances from a patient with eradication failure.

  • Liping Ye‎ et al.
  • Medicine‎
  • 2020‎

The regimens containing levofloxacin (LVX) have been recommended as an alternate to standard triple therapy to treat Helicobacter pylori infections and H pylori mixed infection always lead to H pylori chronic infection. Although the molecular mechanism of LVX resistance with gyrA gene mutation has been clearly understood in H pylori, other genes involved in antibiotic resistance remain unclear. Efflux pump plays an important role in clinically relevant multidrug resistance. Furthermore, the relationship between the strains with different LVX level-resistances from individuals is also unknown.Helicobacter pylori monoclonal strains were isolated from patients with eradication failure. E test was used to detect the minimal inhibitory concentration of LVX. One lower-level LVX-resistant clone and 2 higher-level LVX-resistant clones from the same patient were selected to sequence the complete genomes. Single-nucleotide variants (SNVs) and mutations were extracted and analyzed from gryA and resistance-nodulation-division family efflux genes.Two clones with higher-level resistance had the mutation pattern of Asn87Lys and one lower-level LVX-resistant clone had an Asp91Asn mutation. Compared to clones with higher-level resistance, the higher genetic variations were found in genes belonging to the resistance-nodulation-division family in H pylori strains with lower-level resistance to LVX. There were significantly more SNVs of Hp0970 (hefE) and Hp1329 (hefI) in the lower-level LVX-resistant clone than those in the higher-level LVX-resistant clones (P = .044).The mutation pattern of the Asn87Lys of the gyrA gene confers a higher resistance to LVX than that of the Asp91Asn in H pylori. Increase in the number of SNVs of the Hp0970 (hefE) and Hp1329 (hefI) genes change the resistance to LVX. Twelve mutations verified by Sanger sequencing in Hp0970 (hefE) and Hp1329 (hefI) may decrease resistant levels to LVX.


Comparative phylogenomics and phylotranscriptomics provide insights into the genetic complexity of nitrogen-fixing root-nodule symbiosis.

  • Yu Zhang‎ et al.
  • Plant communications‎
  • 2024‎

Plant root-nodule symbiosis (RNS) with mutualistic nitrogen-fixing bacteria is restricted to a single clade of angiosperms, the Nitrogen-Fixing Nodulation Clade (NFNC), and is best understood in the legume family. Nodulating species share many commonalities, explained either by divergence from a common ancestor over 100 million years ago or by convergence following independent origins over that same time period. Regardless, comparative analyses of diverse nodulation syndromes can provide insights into constraints on nodulation-what must be acquired or cannot be lost for a functional symbiosis-and the latitude for variation in the symbiosis. However, much remains to be learned about nodulation, especially outside of legumes. Here, we employed a large-scale phylogenomic analysis across 88 species, complemented by 151 RNA-seq libraries, to elucidate the evolution of RNS. Our phylogenomic analyses further emphasize the uniqueness of the transcription factor NIN as a master regulator of nodulation and identify key mutations that affect its function across the NFNC. Comparative transcriptomic assessment revealed nodule-specific upregulated genes across diverse nodulating plants, while also identifying nodule-specific and nitrogen-response genes. Approximately 70% of symbiosis-related genes are highly conserved in the four representative species, whereas defense-related and host-range restriction genes tend to be lineage specific. Our study also identified over 900 000 conserved non-coding elements (CNEs), over 300 000 of which are unique to sampled NFNC species. NFNC-specific CNEs are enriched with the active H3K9ac mark and are correlated with accessible chromatin regions, thus representing a pool of candidate regulatory elements for genes involved in RNS. Collectively, our results provide novel insights into the evolution of nodulation and lay a foundation for engineering of RNS traits in agriculturally important crops.


P-MITE: a database for plant miniature inverted-repeat transposable elements.

  • Jiongjiong Chen‎ et al.
  • Nucleic acids research‎
  • 2014‎

Miniature inverted-repeat transposable elements (MITEs) are prevalent in eukaryotic species including plants. MITE families vary dramatically and usually cannot be identified based on homology. In this study, we de novo identified MITEs from 41 plant species, using computer programs MITE Digger, MITE-Hunter and/or Repetitive Sequence with Precise Boundaries (RSPB). MITEs were found in all, but one (Cyanidioschyzon merolae), species. Combined with the MITEs identified previously from the rice genome, >2.3 million sequences from 3527 MITE families were obtained from 41 plant species. In general, higher plants contain more MITEs than lower plants, with a few exceptions such as papaya, with only 538 elements. The largest number of MITEs is found in apple, with 237 302 MITE sequences. The number of MITE sequences in a genome is significantly correlated with genome size. A series of databases (plant MITE databases, P-MITE), available online at http://pmite.hzau.edu.cn/django/mite/, was constructed to host all MITE sequences from the 41 plant genomes. The databases are available for sequence similarity searches (BLASTN), and MITE sequences can be downloaded by family or by genome. The databases can be used to study the origin and amplification of MITEs, MITE-derived small RNAs and roles of MITEs on gene and genome evolution.


Unraveling reproducible dynamic states of individual brain functional parcellation.

  • Amal Boukhdhir‎ et al.
  • Network neuroscience (Cambridge, Mass.)‎
  • 2021‎

Data-driven parcellations are widely used for exploring the functional organization of the brain, and also for reducing the high dimensionality of fMRI data. Despite the flurry of methods proposed in the literature, functional brain parcellations are not highly reproducible at the level of individual subjects, even with very long acquisitions. Some brain areas are also more difficult to parcellate than others, with association heteromodal cortices being the most challenging. An important limitation of classical parcellations is that they are static, that is, they neglect dynamic reconfigurations of brain networks. In this paper, we proposed a new method to identify dynamic states of parcellations, which we hypothesized would improve reproducibility over static parcellation approaches. For a series of seed voxels in the brain, we applied a cluster analysis to regroup short (3 min) time windows into "states" with highly similar seed parcels. We split individual time series of the Midnight scan club sample into two independent sets of 2.5 hr (test and retest). We found that average within-state parcellations, called stability maps, were highly reproducible (over 0.9 test-retest spatial correlation in many instances) and subject specific (fingerprinting accuracy over 70% on average) between test and retest. Consistent with our hypothesis, seeds in heteromodal cortices (posterior and anterior cingulate) showed a richer repertoire of states than unimodal (visual) cortex. Taken together, our results indicate that static functional parcellations are incorrectly averaging well-defined and distinct dynamic states of brain parcellations. This work calls to revisit previous methods based on static parcellations, which includes the majority of published network analyses of fMRI data. Our method may, thus, impact how researchers model the rich interactions between brain networks in health and disease.


E239K mutation abolishes the suppressive effects of lysine-specific demethylase 1 on migration and invasion of MCF7 cells.

  • Yu Zhang‎ et al.
  • Cancer science‎
  • 2022‎

Lysine-specific demethylase 1 (LSD1) is an important histone demethylase that mediates epithelial to mesenchymal transition (EMT). The E239K mutation of LSD1 was identified in a luminal breast cancer patient from the COSMIC Breast Cancer dataset. To investigate the functional effects of the E239K mutation of LSD1, a stable LSD1 knockdown MCF7 cell line was generated. Rescue with WT LSD1, but not E239K mutated LSD1, suppressed the invasion and migration of the LSD1 knockdown cells, indicating that the E239K mutation abolished the suppressive effects of LSD1 on the invasion and migration of MCF7 cells. Further analysis showed that the E239K mutation abolished LSD1-mediated invasion and migration of MCF7 cells through downregulation of estrogen receptor α (ERα). Most importantly, the E239K mutation disrupted the interaction between LSD1 and GATA3, which reduced the enrichment of LSD1 at the promoter region of the ERα gene; the reduced enrichment of LSD1 at the promoter region of the ERα gene caused enhanced histone H3K9 methylation, which subsequently suppressed the transcription of the ERα gene. In summary, the E239K mutation abolishes the suppressive function of LSD1 on migration and invasion of breast cancer cells by disrupting the interaction between LSD1 and GATA3.


Kidney transplant outcomes in HIV-positive patients: a systematic review and meta-analysis.

  • Xin Zheng‎ et al.
  • AIDS research and therapy‎
  • 2019‎

Kidney transplantation is now a viable alternative to dialysis in HIV-positive patients who achieve good immunovirological control with the currently available antiretroviral therapy regimens. This systematic review and meta-analysis investigate the published evidence of outcome and risk of kidney transplantation in HIV-positive patients following the PRISMA guidelines.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: