Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 38 papers

Highly Accurate Pneumatically Tunable Optofluidic Distributed Feedback Dye Lasers.

  • Hongtao Feng‎ et al.
  • Micromachines‎
  • 2023‎

Optofluidic dye lasers integrated into microfluidic chips are promising miniature coherent light sources for biosensing. However, achieving the accurate and efficient tuning of lasers remains challenging. This study introduces a novel pneumatically tunable optofluidic distributed feedback (DFB) dye laser in a multilayer microfluidic chip. The dye laser device integrates microfluidic channels, grating structures, and vacuum chambers. A second-order DFB grating configuration is utilized to ensure single-mode lasing. The application of vacuum pressure to the chambers stretches the soft grating layer, enabling the sensitive tuning of the lasing wavelength at a high resolution of 0.25 nm within a 7.84 nm range. The precise control of pressure and laser tuning is achieved through an electronic regulator. Additionally, the integrated microfluidic channels and optimized waveguide structure facilitate efficient dye excitation, resulting in a low pump threshold of 164 nJ/pulse. This pneumatically tunable optofluidic DFB laser, with its high-resolution wavelength tuning range, offers new possibilities for the development of integrated portable devices for biosensing and spectroscopy.


Baicalein Inhibits Staphylococcus aureus Biofilm Formation and the Quorum Sensing System In Vitro.

  • Yan Chen‎ et al.
  • PloS one‎
  • 2016‎

Biofilm formed by Staphylococcus aureus significantly enhances antibiotic resistance by inhibiting the penetration of antibiotics, resulting in an increasingly serious situation. This study aimed to assess whether baicalein can prevent Staphylococcus aureus biofilm formation and whether it may have synergistic bactericidal effects with antibiotics in vitro. To do this, we used a clinically isolated strain of Staphylococcus aureus 17546 (t037) for biofilm formation. Virulence factors were detected following treatment with baicalein, and the molecular mechanism of its antibiofilm activity was studied. Plate counting, crystal violet staining, and fluorescence microscopy revealed that 32 μg/mL and 64 μg/mL baicalein clearly inhibited 3- and 7-day biofilm formation in vitro. Moreover, colony forming unit count, confocal laser scanning microscopy, and scanning electron microscopy showed that vancomycin (VCM) and baicalein generally enhanced destruction of biofilms, while VCM alone did not. Western blotting and real-time quantitative polymerase chain reaction analyses (RTQ-PCR) confirmed that baicalein treatment reduced staphylococcal enterotoxin A (SEA) and α-hemolysin (hla) levels. Most strikingly, real-time qualitative polymerase chain reaction data demonstrated that 32 μg/mL and 64 μg/mL baicalein downregulated the quorum-sensing system regulators agrA, RNAIII, and sarA, and gene expression of ica, but 16 μg/mL baicalein had no effect. In summary, baicalein inhibited Staphylococcus aureus biofilm formation, destroyed biofilms, increased the permeability of vancomycin, reduced the production of staphylococcal enterotoxin A and α-hemolysin, and inhibited the quorum sensing system. These results support baicalein as a novel drug candidate and an effective treatment strategy for Staphylococcus aureus biofilm-associated infections.


TGF-β1/FGF-2 signaling mediates the 15-HETE-induced differentiation of adventitial fibroblasts into myofibroblasts.

  • Li Zhang‎ et al.
  • Lipids in health and disease‎
  • 2016‎

Pulmonary adventitial fibroblasts (PAFs) are activated under stress stimuli leading to their differentiation into myofibroblasts, which is involved in vessel remodeling. 15-HETE is known as an important factor in vessel remodeling under hypoxia; however, the role of 15-HETE in PAF phenotypic alteration is not clear.


EGF-stimulated activation of Rab35 regulates RUSC2-GIT2 complex formation to stabilize GIT2 during directional lung cancer cell migration.

  • Biao Duan‎ et al.
  • Cancer letters‎
  • 2016‎

Non-small cell lung cancer (NSCLC) remains one of the most metastasizing tumors, and directional cell migration is critical for targeting tumor metastasis. GIT2 has been known to bind to Paxillin to control cell polarization and directional migration. However, the molecular mechanisms underlying roles of GIT2 in controlling cell polarization and directional migration remain elusive. Here we demonstrated GIT2 control cell polarization and direction dependent on the regulation of Golgi through RUSC2. RUSC2 interacts with SHD of GIT2 in various lung cancer cells, and stabilizes GIT2 (Mazaki et al., 2006; Yu et al., 2009) by decreasing degradation and increasing its phosphorylation. Silencing of RUSC2 showed reduced stability of GIT2, defective Golgi reorientation toward the wound edge and decreased directional migration. Moreover, short-term EGF stimulation can increase the interaction between RUSC2 and GIT2, prolonged stimulation leads to a decrease of their interaction through activating Rab35. Silencing of Rab35 also reduced stability and phosphorylation of GIT2 and decreased cell migration. Taken together, our study indicated that RUSC2 participates in EGFR signaling and regulates lung cancer progression, and may be a new therapeutic target against lung cancer metastasis.


Role of HMGB1 in regulation of STAT3 expression in CD4(+) T cells from patients with aGVHD after allogeneic hematopoietic stem cell transplantation.

  • Ya-Jing Xu‎ et al.
  • Clinical immunology (Orlando, Fla.)‎
  • 2015‎

Treg/Th17 balance plays a critical role in maintaining immune homeostasis of acute graft-versus-host disease (aGVHD) patients. STAT3 is an important factor involved in the instability of Treg and the promotion of Th17. HMGB1 is a cytokine mediator of inflammation and an important chromatin protein regulating gene transcription. In this study, we found that the expressions of HMGB1 and STAT3 were higher in CD4(+) T cells of patients with aGVHD compared with those without aGVHD, and the HMGB1 expression was positively correlated with the STAT3 expression. Simultaneously, their expressions were positively correlated with the severity of the aGVHD. We also demonstrated that HMGB1 could regulate the expression of STAT3 by modulation of its DNA methylation in CD4(+) T cells, moreover downregulated HMGB1 in aGVHD CD4(+) T cells could change the ratio of Treg/Th17. These data strongly suggest that HMGB1 plays a crucial role in the regulation of Treg/Th17 and progression of aGVHD.


Identification of gene expression modifications in myostatin-stimulated myoblasts.

  • Wei Yang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2005‎

Myostatin belongs to the transforming growth factor beta superfamily and has been shown to function as an inhibitor of skeletal muscle proliferation and differentiation. To gain insight into the molecular mechanisms of myostatin function during myogenesis, differential display reverse transcription PCR was employed to identify altered gene expressions associated with myostatin inhibitory function in chicken fetal myoblasts (CFMs). In this work, we have identified seven up-regulated and 12 down-regulated genes in myostatin stimulated CFMs. Those genes are involved in myogenic differentiation, cell architecture, energy metabolism, signal transduction, and apoptosis. The down-regulation of muscle creatine kinase B, troponin C, and myosin regulatory light chain is in agreement with the myostatin negative role in myocyte differentiation. In addition, the expression alteration of skeletal muscle-specific cardiac ankyrin repeat protein and the bcl-2 related anti-apoptotic protein Nr-13 suggests possible unique roles for myostatin in regulating myogenesis by controlling cofactors participated transcriptional regulation and apoptosis.


Intratracheal transplantation of endothelial progenitor cells attenuates smoking-induced COPD in mice.

  • Zhihui Shi‎ et al.
  • International journal of chronic obstructive pulmonary disease‎
  • 2017‎

Endothelial progenitor cells (EPCs) might play a protective role in COPD. The aim of this study was to investigate whether intratracheal allogeneic transplantation of bone-marrow-derived EPCs would attenuate the development of smoking-induced COPD in mice.


LncRNA-GAS5 promotes spinal cord repair and the inhibition of neuronal apoptosis via the transplantation of 3D printed scaffold loaded with induced pluripotent stem cell-derived neural stem cells.

  • Rongxue Shao‎ et al.
  • Annals of translational medicine‎
  • 2021‎

Stem cell transplantation has been increasingly used for spinal cord repair, and some achievements have been made. However, limited stem cell sources as well as immune rejection and ethical issues have restricted its wide application. Therefore, to achieve further breakthroughs regarding the application of stem cell transplantation to treat spinal cord injury (SCI), it is important to develop a stem cell line that can effectively avoid immune rejection and ethical issues.


Electroacupuncture at ST36 ameliorates gastric emptying and rescues networks of interstitial cells of Cajal in the stomach of diabetic rats.

  • Yan Chen‎ et al.
  • PloS one‎
  • 2013‎

Depletion of interstitial cells of Cajal (ICC) is certified in the stomach of diabetic patients. Though electroacupuncture (EA) at ST36 is an effective therapy to regulate gastric motility, the mechanisms of EA at ST36 on gastric emptying and networks of ICC remain to be elucidated. The aims of this study were to investigate the effects of EA on gastric emptying and on the alterations of ICC networks. Rats were randomized into the control, diabetic rats (DM), diabetic rats with sham EA (DM+SEA), diabetic rats with low frequency EA (DM+LEA) and diabetic rats with high frequency EA groups (DM+HEA). The expression of c-kit in each layer of gastric wall was assessed by western blotting. The proliferation of ICC was identified by immunolabeling of c-kit and Ki67 as the apoptosis of ICC was examined by TUNEL staining. The results were as follows: (1) Gastric emptying was severely delayed in the DM group, but accelerated in the LEA and HEA group, especially in the LEA group. (2) The expression of c-kit in each layer was reduced apparently in the DM group, but also up-regulated in the LEA and HEA group. (3) Plentiful proliferated ICC (c-kit+/Ki67+) forming bushy networks with c-kit+ cells were observed in the LEA and HEA group, while the apoptotic cells (c-kit+/TUNEL+) were hardly captured in the LEA and HEA group. Collectively, low and high frequency EA at ST36 rescue the damaged networks of ICC by inhibiting the apoptosis and enhancing the proliferation in the stomach of diabetic rats, resulting in an improved gastric emptying.


MICAL1 facilitates breast cancer cell proliferation via ROS-sensitive ERK/cyclin D pathway.

  • Wenjie Deng‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2018‎

Molecule interacting with CasL 1 (MICAL1) is a multidomain flavoprotein mono-oxygenase that strongly involves in cytoskeleton dynamics and cell oxidoreduction metabolism. Recently, results from our laboratory have shown that MICAL1 modulates reactive oxygen species (ROS) production, and the latter then activates phosphatidyl inositol 3-kinase (PI3K)/protein kinase B (Akt) signalling pathway which regulates breast cancer cell invasion. Herein, we performed this study to assess the involvement of MICAL1 in breast cancer cell proliferation and to explore the potential molecular mechanism. We noticed that depletion of MICAL1 markedly reduced cell proliferation in breast cancer cell line MCF-7 and T47D. This effect of MICAL1 on proliferation was independent of wnt/β-catenin and NF-κB pathways. Interestingly, depletion of MICAL1 significantly inhibited ROS production, decreased p-ERK expression and unfavourable for proliferative phenotype of breast cancer cells. Likewise, MICAL1 overexpression increased p-ERK level as well as p-ERK nucleus translocation. Moreover, we investigated the effect of MICAL1 on cell cycle-related proteins. MICAL1 positively regulated CDK4 and cyclin D expression, but not CDK2, CDK6, cyclin A and cyclin E. In addition, more expression of CDK4 and cyclin D by MICAL1 overexpression was blocked by PI3K/Akt inhibitor LY294002. LY294002 treatment also attenuated the increase in the p-ERK level in MICAL1-overexpressed breast cancer cells. Together, our results suggest that MICAL1 exhibits its effect on proliferation via maintaining cyclin D expression through ROS-sensitive PI3K/Akt/ERK signalling in breast cancer cells.


Cigarette Smoke Extract Changes Expression of Endothelial Nitric Oxide Synthase (eNOS) and p16(INK4a) and is Related to Endothelial Progenitor Cell Dysfunction.

  • Zhihui He‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2017‎

BACKGROUND Endothelial dysfunction is an important pathophysiologic feature in many smoke-related diseases. Endothelial progenitor cells (EPCs) are the precursors of endothelial cells and play a fundamental role in the maintenance of endothelial integrity and function. Endothelial nitric oxide synthase (eNOS) is the dominant NOS isoform in the vasculature and plays a central role in the maintenance of endothelial homeostasis. p16(INK4a) is a cyclin-dependent kinase inhibitor and could be regarded as a major dominant senescence gene. The present study aimed to determine whether the expression of eNOS and p16(INK4a) in EPCs is related to EPCs function and the possible epigenetic mechanism, if any. MATERIAL AND METHODS We investigated EPCs capacity for proliferation, adhesion, and secretion, and the expression of eNOS and p16(INK4a) in EPCs which were altered by cigarette smoke extract (CSE) in vitro. Furthermore, Decitabine (Dec), an agent of demethylation, was used to examine whether it could alter the changes induced by CSE. RESULTS The present study demonstrated that EPCs altered by CSE in vitro displayed decreased capacities of proliferation, adhesion, and secretion, which was accompanied by decreased eNOS expression and increased p16(INK4a) expression in EPCs. Furthermore, Dec could alleviate the changes in the expression of eNOS and p16(INK4a), and protect against the EPCs dysfunction caused by CSE. CONCLUSIONS The decreased eNOS expression and increased p16(INK4a) expression was associated with dysfunction of EPCs caused by CSE. The mechanism of methylation, one of the most common epigenetic mechanism, may be involved in the EPCs dysfunction caused by CSE.


Effects of Plant Growth-Promoting Bacteria (PGPB) Inoculation on the Growth, Antioxidant Activity, Cu Uptake, and Bacterial Community Structure of Rape (Brassica napus L.) Grown in Cu-Contaminated Agricultural Soil.

  • Xue-Min Ren‎ et al.
  • Frontiers in microbiology‎
  • 2019‎

Previous analyses of plant growth-promoting bacteria (PGPB) combined with the remediation of heavy metal pollution in soil have largely been performed under potting or greenhouse conditions, and in situ remediation experiments under field conditions have rarely been reported. In this study, the effects of the metal-resistant PGPB Microbacterium oxydans JYC17, Pseudomonas thivervalensis Y1-3-9, and Burkholderia cepacia J62 on soil Cu pollution under rape remediation were studied in the farmland surrounding the Nanjing Jiuhuashan copper mining region in China. Following inoculation treatment for 50 days, the biomasses of the rape inoculated with strains JYC17, Y1-3-9, and J62 increased, and the total amounts of Cu uptake increased by 113.38, 66.26, and 67.91%, respectively, the translocation factor (TF) of rape inoculated with J62 was 0.85, a significant increase of 70.68%, thus improving the Cu remediation efficiency of the rape. Y1-3-9 and J62 affected the bioavailability of Cu in the soil, and the water-soluble Cu contents were increased by 10.13 and 41.77%, respectively, compared with the control. The antioxidant activities in the rape leaves showed that the tested bacteria increased the contents of antioxidant non-enzymatic substances, including ascorbic acid (ASA) and glutathione (GSH), which were increased by 40.24-91.22% and 9.89-17.67%, respectively, thereby reducing the oxidative stress caused by heavy metals and the contents of thiobarbituric acid-reactive substances (TBARS) and peroxidase (POD). PCR-denaturing gradient gel electrophoresis (PCR-DGGE) was used to analyze the effects of the tested bacteria on the cultivation-dependent and cultivation-independent bacterial communities in the root endosphere and rhizosphere soil of the rape. The sequencing results of the DGGE bands indicated that the tested bacteria colonized the endosphere and rhizosphere, and they became an important component of the cultivation-dependent bacteria. The canonical correspondence analysis (CCA) of the DGGE profile and similarity cluster analysis showed that the tested bacteria affected the cultivation-dependent and cultivation-independent bacterial communities in the root endosphere and rhizosphere. In this experiment, the effects and mechanisms of the combined plant-microbe remediation under field conditions were preliminarily studied, and the results are expected to provide a theoretical basis for future combined remediation experiments.


Increased cell apoptosis in human lung adenocarcinoma and in vivo tumor growth inhibition by RBM10, a tumor suppressor gene.

  • Yunxi Ji‎ et al.
  • Oncology letters‎
  • 2017‎

Tumor suppressor genes are frequently deleted or mutated in lung cancer. The RNA-binding motif protein 10 (RBM10) gene has the ability to suppress tumor activity, but the role of RBM10 during the development of lung cancer has yet to be elucidated. The current study investigated the expression levels of RBM10 in non-tumor and tumor tissues obtained from patients with adenocarcinoma using reverse transcription-polymerase chain reaction and western blot analysis, and identified a reduction in RBM10 expression in lung tumor tissue. To investigate the in vitro and in vivo function of RBM10, A549 human non-small cell lung cancer cells were transfected with the pcDNA-RBM10 vector. Flow cytometry was used to analyze the levels of apoptosis in the transfected cells. Western blot analysis was used to evaluate the expression of B-cell lymphoma 2 (Bcl-2), cleaved caspase-3, caspase-9 and poly (ADP-ribose) polymerase (PARP) proteins in A549 cells and tissues from the A549 xenograft Bagg Albino coat (BALB/c) nude mice model. RBM10 mRNA levels were significantly decreased in adenocarcinoma cells, but not in the non-tumor tissues. The A549 cells and tumor tissues exhibited significant growth inhibition following transfection with the pcDNA-RBM10 vector, which was determined using a cell proliferation assay. Flow cytometry analysis of cells stained with Annexin V/propidium iodide indicated that the overexpression of RBM10 induced apoptosis in A549 cells. The present study demonstrated that the expression levels of Bcl-2 protein were decreased and the expression levels of cleaved caspase-3, caspase-9 and PARP proteins were significantly increased in the A549 cells and cells from ex vivo tumor tissues that were injected with RBM10 vector-containing Salmonella enterica subspecies enterica serovar typhimurium. Notably, the current study identified that the accumulated and stable overexpression of RBM10 in the xenograft BALB/c nude mice model significantly inhibited the tumor growth rate. These results may provide novel insights into the use of RBM10 for lung cancer diagnosis and therapy.


HMGB1 regulates P-glycoprotein expression in status epilepticus rat brains via the RAGE/NF-κB signaling pathway.

  • Yuan Xie‎ et al.
  • Molecular medicine reports‎
  • 2017‎

Overexpression of P-glycoprotein (P-gp) in the brain is an important mechanism involved in drug‑resistant epilepsy (DRE). High-mobility group box 1 (HMGB1), an inflammatory cytokine, significantly increases following seizures and may be involved in upregulation of P‑gp. However, the underlying mechanisms remain elusive. The aim of the present study was to evaluate the role of HMGB1 and its downstream signaling components, receptor for advanced glycation end‑product (RAGE) and nuclear factor‑κB (NF‑κB), on P‑gp expression in rat brains during status epilepticus (SE). Small interfering RNA (siRNA) was administered to rats prior to induction of SE by pilocarpine, to block transcription of the genes encoding HMGB1 and RAGE, respectively. An inhibitor of NF‑κB, pyrrolidinedithiocarbamic acid (PDTC), was utilized to inhibit activation of NF‑κB. The expression levels of HMGB1, RAGE, phosphorylated‑NF‑κB p65 (p‑p65) and P‑gp were detected by western blotting. The relative mRNA expression levels of the genes encoding these proteins were measured using reverse transcription‑quantitative polymerase chain reaction and the cellular localization of the proteins was determined by immunofluorescence. Pre‑treatment with HMGB1 siRNA reduced the expression levels of RAGE, p‑p65 and P‑gp. PDTC reduced the expression levels of P‑gp. These findings suggested that overexpression of P‑gp during seizures may be regulated by HMGB1 via the RAGE/NF‑κB signaling pathway, and may be a novel target for treating DRE.


Wortmannin inhibits K562 leukemic cells by regulating PI3k/Akt channel in vitro.

  • Qing Wu‎ et al.
  • Journal of Huazhong University of Science and Technology. Medical sciences = Hua zhong ke ji da xue xue bao. Yi xue Ying De wen ban = Huazhong keji daxue xuebao. Yixue Yingdewen ban‎
  • 2009‎

The inhibitory effect of wortmannin on leukemic cells and the possible mechanisms were examined. K562 cells were treated with wortmannin of various concentrations (3.125-100 nmol/L) for 0-72 h. MTT assay was used to evaluate the inhibitory effect of wortmannin on the growth of K562 cells. Cell apoptosis was detected by both Annexin-V FITC/PI double-labeled cytometry and transmission electron microscopy (TEM). The expression of p-Akt, T-p-Akt, NF-kappaBp65 and IKK-kappaB was determined by Western blotting and reverse transcription-polymerase chain reaction (RT-PCR). Our results showed that wortmannin obviously inhibited growth and induced apoptosis of K562 cells in vitro in a time- and dose-dependent manner. The IC(50) value of wortmannin for 24 h was 25+/-0.14 nmol/L. Moreover, wortmannin induced K562 cells apoptosis in a dose-dependent manner. TEM revealed typical morphological changes of apoptosis in wortmannin-treated K562 cells, such as chromatin condensation, karyopyknosis, karyorhexis and apoptotic bodies. Additionally, several important intracellular protein kinases such as p-Akt, NF-kappaBp65 and IKK-kappaB experienced degradation of various degrees in a dose-dependent manner both at protein level and transcription level when cultured with wortmannin, but the expression of total Akt showed no change. It is concluded that wortmannin can inhibit the proliferation and induce apoptosis of K562 leukemia cells possibly by down-regulating the survival signaling pathways (PI3K/Akt and NF-kappaB channels).


Clinical significance of HDAC1, -2 and -3 expression levels in esophageal squamous cell carcinoma.

  • Huiwu Li‎ et al.
  • Experimental and therapeutic medicine‎
  • 2020‎

The present study analyzed the expression of the histone deacetylase (HDAC) 1, 2 and 3 in primary esophageal squamous cell carcinoma (ESCC) samples and how their levels correlate with clinicopathological parameters. ESCC patients (n=88) in the present study had received no previous treatment before undergoing surgical excision. The mRNA expression of HDAC1, -2 and -3 were detected by semi-quantified PCR in ESCC samples and distal normal samples. The relationship of HDAC1, -2 and -3 expression with clinicopathological parameters was analyzed by χ2 test. The correlation among these HDACs was analyzed by Pearson's correlation test. Compared with distal normal tissues, ESCC samples had higher expression of HDAC1, but not HDAC2 or HDAC3 (P<0.05). The expression of HDACs was different between Kazak and Han ethnicities. The expression of HDAC2 was correlated with invasion depth (P<0.05), but not with sex, age, metastasis, or the degree of tumor differentiation (P>0.05). There was no association between HDAC1 or HDAC3 and clinicopathological parameters (P>0.05). For the Kazak and Han ethnicities, HDAC1 expression was present in male patients, patients with well/moderate differentiated ESCC and T3 and T4 ESCC (P<0.01). HDAC1 in patients aged <60 was associated with ethnicity (P<0.05). HDAC2 expression was different in positive LN metastasis, well/moderate differentiation and T3 and T4 ESCC (P<0.01). HDAC3 expression in male patients, patients with negative LN metastasis and well/moderate differentiation ESCC was associated with ethnicity (P<0.05). Additionally, the expression levels of HDAC1, -2 and -3 did not correlate with each other. Thus, HDAC1 expression may be used as a risk factor for ESCC and HDAC2 levels may be used to predict invasion depth. The expression of HDAC1, -2 and -3 has ethnic differences.


Decreased expression of endothelial cell specific molecule-1 in lung tissue in emphysematous mice and stable COPD patients.

  • Yan Zhang‎ et al.
  • Iranian journal of basic medical sciences‎
  • 2020‎

Apoptosis of pulmonary alveolar septal cells is a pathogenesis characteristic of chronic obstructive pulmonary disease (COPD). Endothelial cell specific molecule-1 (ESM-1) plays an important role in apoptosis of cells. Here, we aimed to determine whether ESM-1 can involve in cell apoptosis in emphysematous mice and stable COPD patients. The sample size of patients was small, so two separate models were studied.


Downregulation of TNIP1 Expression Leads to Increased Proliferation of Human Keratinocytes and Severer Psoriasis-Like Conditions in an Imiquimod-Induced Mouse Model of Dermatitis.

  • Yan Chen‎ et al.
  • PloS one‎
  • 2015‎

Psoriasis is a chronic, inflammatory skin disease involving both environmental and genetic factors. According to genome-wide association studies (GWAS), the TNIP1 gene, which encodes the TNF-α-induced protein 3-interacting protein 1 (TNIP1), is strongly linked to the susceptibility of psoriasis. TNIP1 is a widely expressed ubiquitin sensor that binds to the ubiquitin-editing protein A20 and restricts TNF- and TLR-induced signals. In our study, TNIP1 expression decreased in specimens of epidermis affected by psoriasis. Based on previous studies suggesting a role for TNIP1 in modulating cancer cell growth, we investigated its role in keratinocyte proliferation, which is clearly abnormal in psoriasis. To mimic the downregulation or upregulation of TNIP1 in HaCaT cells and primary human keratinocytes (PHKs), we used a TNIP1 specific small interfering hairpin RNA (TNIP1 shRNA) lentiviral vector or a recombinant TNIP1 (rTNIP1) lentiviral vector, respectively. Blocking TNIP1 expression increased keratinocyte proliferation, while overexpression of TNIP1 decreased keratinocyte proliferation. Furthermore, we showed that TNIP1 signaling might involve extracellular signal-regulated kinase1/2 (Erk1/2) and CCAAT/enhancer-binding protein β (C/EBPβ) activity. Intradermal injection of TNIP1 shRNA in BALB/c mice led to exaggerated psoriatic conditions in imiquimod (IMQ)-induced psoriasis-like dermatitis. These findings indicate that TNIP1 has a protective role in psoriasis and therefore could be a promising therapeutic target.


LncRNA-SNHG29 inhibits vascular smooth muscle cell calcification by downregulating miR-200b-3p to activate the α-Klotho/FGFR1/FGF23 axis.

  • Chong Huang‎ et al.
  • Cytokine‎
  • 2020‎

Vascular calcification (VC) is characterized by mineral accumulation on the walls of arteries and veins, which is a pathological process commonly found in elderly individuals and patients with atherosclerosis, hypertension, and diabetes. Emerging evidence suggests that long non-coding RNAs (lncRNAs) play an important role in VC. However, the role of SNHG29 is less clear.


Purification and Characterization of a Novel Pentadecapeptide from Protein Hydrolysates of Cyclina sinensis and Its Immunomodulatory Effects on RAW264.7 Cells.

  • Wei Li‎ et al.
  • Marine drugs‎
  • 2019‎

In the present study, peptide fractions of Cyclina sinensis hydrolysates, with molecular weight (MW) < 3 kDa and highest relative proliferation rate of murine macrophage cell line RAW 264.7, were purified by a series of chromatographic purification methods, to obtain peptide fractions with immunomodulatory activity. The amino acid sequence of the peptide was identified to be Arg-Val-Ala-Pro-Glu-Glu-His-Pro-Val-Glu-Gly-Arg-Tyr-Leu-Val (RVAPEEHPVEGRYLV) with MW of 1750.81 Da, and the novel pentadecapeptide (named SCSP) was synthesized for subsequent immunomodulatory activity experiments. Results showed the SCSP enhanced macrophage phagocytosis, increased productions of nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β), and up-regulated the protein level of inducible nitric oxide synthase (iNOS), nuclear factor κB (NF-κB), and NOD-like receptor protein 3 (NLRP3) in RAW 264.7 cells. Furthermore, the expression of inhibitor of nuclear factor κB-α (IκB-α) was down-regulated. These findings suggest that SCSP might stimulate macrophage activities by activating the NF-κB signaling pathway and can be used as a potential immunomodulatory agent in functional food or medicine.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: