2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Cytotoxic Sesquiterpene Lactones from Kauna lasiophthalma Griseb.

  • Eliana M Maldonado‎ et al.
  • Scientia pharmaceutica‎
  • 2014‎

Two new eudesmane derivatives (3 and 8) were isolated from the ethanol extract of the aerial parts of Kaunia lasiophthalma Griseb, together with 14 known eudesmane, germacrane, and guaiane sesquiterpenes, and four flavones. The structures and relative configurations of all the compounds were established by NMR spectroscopy and high-resolution mass spectrometry. The anticancer activity of sesquiterpenes 1, 3, 6-9, 11, 12, 14, and 16 was evaluated in vitro with the breast cancer cell lines HCC1937, JIMT-1, L56Br-C1, MCF-7, and SK-BR-3, and compared with the cytotoxicity in the non-cancerous breast epithelial cell line MCF-10A. All compounds were found to possess anticancer activity, and compound 1 was the most potent in all of the investigated cancer cell lines with IC50 values ranging between 2.0 and 6.2 μM. In order to demonstrate the importance of the α-methylene-γ-lactone/ester moiety present in all compounds for the effects on the cells, the methyl cysteine adduct 21 was prepared from 9 and found to be inactive or considerably less potent.


The use of polyhydroxylated carboxylic acids and lactones to diminish biofilm formation of the pathogenic yeast Candida albicans.

  • Olena P Ishchuk‎ et al.
  • RSC advances‎
  • 2019‎

The vaginal microbiome of healthy women is a diverse and dynamic system of various microorganisms. Any sudden change in microbe composition can increase the vaginal pH and thus lead to vaginal infections, conditions that affect a large percentage of women each year. The most common fungal strains involved in infections belong to the yeast species Candida albicans. The main virulence factor of C. albicans is the ability to transform from planktonic yeast-form cells into a filamentous form (hyphae or pseudohyphae), with the subsequent formation of biofilm. The hyphal form, constituted by filamentous cells, has the ability to invade tissue and induce inflammation. Our hypothesis is that certain polyhydroxylated carboxylic acids, that may serve as an alternative carbohydrate source and at the same time lower the pH, function as an indicator of a nutrient-rich environment for C. albicans, which favors planktonic cells over hyphae, and thus diminish the formation of biofilm. We have shown that the biofilm formation in C. albicans and other Candida species can be significantly reduced by the addition of glucono-δ-lactone (GDL).


Cytotoxic and other bioactivities of a novel and known sesquiterpene lactones isolated from Vernonia leopoldi (Sch. Bip. ex Walp.) Vatke in breast cancer cell lines.

  • Nigatu Tuasha‎ et al.
  • Toxicology reports‎
  • 2022‎

Vernonia leopoldi (Sch. Bip. ex Walp.) Vatke (Asteraceae) is one of the widely used anti-cancer traditional medicinal plants in Ethiopia, despite the lack of data to support its therapeutic efficacy. Here we describe the isolation of compounds from the plant and the investigation of their cytotoxicity and other bioactivities. We identified the novel sesquiterpene lactone (SL) 11ß,13-dihydrovernodalol along with the three other SLs (vernomenin, vernolepin, and 11ß,13-dihydrovernodalin) and three flavonoids (apigenin, eriodyctiol, and luteolin) isolated from this plant for the first time. The structures of all the compounds were established based on extensive analysis of nuclear magnetic resonance spectroscopic data and confirmed by high-resolution electrospray ionization mass spectrometry. We then studied the biological activities of the SLs and found that all were cytotoxic at low μM ranges against MCF-7 and JIMT-1 breast cancer cells as well as against the normal-like MCF-10A breast epithelial cells evaluated in a spectrophotometric assay. All the SLs significantly reduced JIMT-1 cell migration after 72 h of treatment with 2 μM concentrations in a wound healing assay. Treatment with all SLs reduced the aldehyde dehydrogenase expressing cancer stem cell sub-population of the JIMT-1 cells significantly, evaluated by flow cytometry. Only 11ß,13-dihydrovernodalin resulted in a significant inhibition of tumor necrosis factor-α-induced translocation of nuclear factor κB to the cell nucleus. In addition, we show that the reporter fluorophore nitrobenzoxadiazole (NBD) can successfully be conjugated with an SL and that this SL-NBD conjugate is taken up efficiently in JIMT-1 cells. Therefore, the overall bioactivities of the SL compounds and specifically their effects against the stemness of breast cancer cells make them prime candidates for further in-depth investigation.


Anti-cancer stem cell activity of a sesquiterpene lactone isolated from Ambrosia arborescens and of a synthetic derivative.

  • Wendy Soria Sotillo‎ et al.
  • PloS one‎
  • 2017‎

New regimens are constantly being pursued in cancer treatment, especially in the context of treatment-resistant cancer stem cells (CSCs) that are assumed to be involved in cancer recurrence. Here, we investigated the anti-cancer activity of sesquiterpene lactones (SLs) isolated from Ambrosia arborescens and of synthetic derivatives in breast cancer cell lines, with a specific focus on activity against CSCs. The breast cancer cell lines MCF-7, JIMT-1, and HCC1937 and the normal-like breast epithelial cell line MCF-10A were treated with the SLs damsin and coronopilin, isolated from A. arborescens, and with ambrosin and dindol-01, synthesized using damsin. Inhibitory concentration 50 (IC50) values were obtained from dose-response curves. Based on IC50 values, doses in the μM range were used for investigating effects on cell proliferation, cell cycle phase distribution, cell death, micronuclei formation, and cell migration. Western blot analysis was used to investigate proteins involved in cell cycle regulation as well as in the NF-κB pathway since SLs have been shown to inhibit this transcription factor. Specific CSC effects were investigated using three CSC assays. All compounds inhibited cell proliferation; however, damsin and ambrosin were toxic at single-digit micromolar ranges, while higher concentrations were required for coronopilin and dindol-01. Of the four cell lines, the compounds had the least effect on the normal-like MCF-10A cells. The inhibition of cell proliferation can partly be explained by downregulation of cyclin-dependent kinase 2. All compounds inhibited tumour necrosis factor-α-induced translocation of NF-κB from the cytoplasm to the nucleus. Damsin and ambrosin treatment increased the number of micronuclei; moreover, another sign of DNA damage was the increased level of p53. Treatment with damsin and ambrosin decreased the CSC subpopulation and inhibited cell migration. Our results suggest that these compounds should be further investigated to find efficient CSC-inhibiting compounds.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: