2024MAY02: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 27 papers

The metabolic differences of anestrus, heat, pregnancy, pseudopregnancy, and lactation in 800 female dogs.

  • Claudia Ottka‎ et al.
  • Frontiers in veterinary science‎
  • 2023‎

Reproduction causes major hormonal and physiological changes to the female body. However, the metabolic changes occurring during canine reproduction are scarcely studied.


Endophyte-Infected Tall Fescue Affects Rumen Microbiota in Grazing Ewes at Gestation and Lactation.

  • Jianmin Chai‎ et al.
  • Frontiers in veterinary science‎
  • 2020‎

Tall fescue (Schedonorus arundinaceus) is a cool-season perennial grass that is widely used as a forage for many livestock species including sheep. An endophyte (Neotyphodium coenophialum) in tall fescue produces ergot alkaloids that enhance plant survival but produce toxicosis in animals. The objective of this study was to investigate the rumen microbiota from gestation and lactation in ewes grazing tall fescue pastures with high (HA) or moderate (MA) levels of endophyte infection, and their relationship with serum parameters. Data were collected at the beginning of the study (d1), the week before initiation of lambing (d51), and at the end of the trial (d115). The rumen microbiota was evaluated using 16S rRNA gene sequencing. Ewes grazing HA had greater serum non-esterified fatty acid (NEFA) (P = 0.024) levels compared with ewes in MA pasture at d115. Both the number of observed OTUs and Shannon diversity index tended (P = 0.08, P = 0.06) to be greater for HA than for MA on d115. At the genus level, Prevotella relative abundance increased with time in both MA and HA (on d1, d51, and d115: 15.17, 25.59, and 24.78% in MA; 14.17, 18.10, and 19.41% in HA). Taxa unclassified at the genus level including (unclassified) Lachnospiraceae, Coriobacteriaceae, and Veillonellaceae exhibited higher abundances in HA at d51 (3.72, 2.07, and 11.22%) compared with MA (2.06, 1.28, and 7.42%). The predictor microbiota for HA and MA were identified by a random forest classification model. The HA predictors included bacteria associated with unclassified Coriobacteriaceae and Ruminococcaceae. Other OTUs classified as Prevotella and Clostridiales could be microbial predictors for MA. The OTUs classified as Prevotella and Lachnospiraceae were negatively correlated with serum concentration of prolactin. Negative correlations with NEFA were observed in the microbiota such as species affiliated to unclassified Clostridiales and Prevotella. OTUs classified as Bacteroidetes and Coriobacteriaceae exhibited a positive correlation with NEFA. Our study confirmed that the rumen microbiota populations were affected by high levels of toxins in endophyte-infected tall fescue and were associated with host hormone and energy metabolism.


Steroidogenic, Metabolic, and Immunological Markers in Dairy Cows Diagnosed With Cystic Ovarian Follicles at Early and Mid-Late Lactation.

  • Fabio S Lima‎ et al.
  • Frontiers in veterinary science‎
  • 2019‎

The etiology of cystic ovarian follicles (COF) remains a conundrum with steroidogenic, immunological, and metabolic dysfunctions linked to its development. Studies suggest that COF development may occur as a result of disruption of the insulin signaling pathway and the severity of a negative energy balance in dairy cows, but mid to late lactation cows diagnosed with COF are unlikely to have issues with energy metabolism. Herein, we characterized the mRNA expression of steroidogenic (LHCGR, StAR, CYP11A1, 3β-HSD, CYP19A), immunological (IL-1β, IL-6, IL-8, TLR-4, TNF), and metabolic markers (IGF-1, IRS1) in follicular fluid; and plasma and follicular fluid levels of E2, IL-1β, glucose, and NEFA in early and mid-late lactation COF cows. Lactating dairy cows were diagnosed as having COF (n = 11, follicle >20 mm persistent for 7 days, absence of corpus luteum, and flaccid uterus) while 11 herdmates cycling with a dominant follicle were classified as the control cows. Cows diagnosed with COF were classified as early lactation (COF-E, n = 5) cows, <35 days in milk (DIM); or mid-late lactation (COF-M/L, n = 6), ≥118 DIM cows. Results revealed that mRNA expression StAR was greater (P < 0.01) in COF-E cows than COF-M/L cows and the control cows. The mRNA expression CYP19A1 was lower (P < 0.01) in COF-E cows and COF-M/L cows than in the control cows. The mRNA expression IL-6 and IRS-1 tended to be greater and lower, respectively, in COF-M/L cows compared to the control cows. The mRNA expression IGF-1 was greater (P < 0.01) in COF-E and COF-M/L cows than in the control cows. The plasma and follicular fluid concentration of NEFA was greater (P < 0.05) in COF-E cows than in COF-M/L and the control cows. Cows with COF-E had disturbances in steroidogenic and metabolic markers, while cows with COF-M/L had steroidogenic, immunological, and metabolic dysregulations, suggesting that COF pathogenesis may vary between early and mid-late lactation dairy cows.


Somatic Cell Number, Physicochemical, and Microbiological Parameters of Raw Milk of Goats During the End of Lactation as Compared by Breeds and Number of Lactations.

  • Rreze M Gecaj‎ et al.
  • Frontiers in veterinary science‎
  • 2021‎

This study was aimed for the evaluation of somatic cell count (SCC), physicochemical, and microbiological parameters during the end of lactation in the raw milk of Alpine and native Red goat breed. In the experiment, 102 milk samples from Alpine and native Red goats were included. Two different groups within the same breed were analyzed: a group consisting of animals in their first lactation and the second group consisting of animals from the fifth lactation. The milk samples were individually and daily collected during late lactation for three consecutive weeks, and milk fat, protein, lactose, SCC, and total bacteria with enterobacteria were assessed. Fresh milk of goats from late lactation period had a number of somatic cells (SC) within the expected value with log10 of 5.8-6.18 cells/ml for the compared groups. In both breeds, the total mesophilic bacteria were fewer in numbers, however, in the native Red goat, a larger population of such bacteria was enumerated. The number of coliforms and enterobacteria was below 100 cfu/ml. In the current study, we were able to show a significant difference among the studied breeds depending on lactation and season for fat (p = 0.002), but not for lactose and protein content. A positive correlation for total protein (TP), lactose, and fat as well as for lactose and SCC was found in the native Red goat breed. In the Alpine goat breed, a strong positive correlation (0.821**) was found for lactose and enterobacteria count (EC). In conclusion, these findings evaluate different goat milk parameters during late lactation period and provide an indirect measure to monitor goat mammary gland health for both breeds.


Construction of the waaF Subunit and DNA Vaccine Against Escherichia coli in Cow Mastitis and Preliminary Study on Their Immunogenicity.

  • Hua Wang‎ et al.
  • Frontiers in veterinary science‎
  • 2022‎

Escherichia coli (E. coli) is one of the major pathogenic bacteria in bovine mastitis, which usually triggers systemic symptoms by releasing lipopolysaccharide (LPS). waaF is the core in LPS pathogenicity. In this study, a new waaF vaccine candidate was identified, constructed with the pcDNA3.1 (+)HisB-waaF plasmid to create to a DNA vaccine (pcwaaF), and transfected into MCF-7 cells to produce recombinant waaF subunit vaccine (rwaaF). After that, the safety of the two vaccine candidates was evaluated in mouse model. Immunogenicity and mortality of challenged mice were compared in 20 and 40 μg per dose, respectively. The results showed that rwaaF and pcwaaF were successfully constructed and the complete blood count and serum biochemical indicated that both of the vaccine candidates were safe (p > 0.05). In addition, histopathological staining showed no obvious pathological changes. The immune response induced by rwaaF was significantly higher than that of pcwaaF (p < 0.01), indicated by levels of serum concentration of IgG IL-2, IL-4, and IFN-γ, and feces concentration of sIgA. Survival rates of mice in rwaaF groups (both 80%) were also higher than in the pcwaaF groups (40 and 50%, respectively). Comparing the safety, immunogenicity, and E. coli challenge of two vaccine candidates, rwaaF had the better effect and 20 μg rwaaF was more economical. In conclusion, this study demonstrates the utility of a new E. coli vaccine and provides a rationale for further investigation of bovine mastitis therapy and management.


Comparing Blanket vs. Selective Dry Cow Treatment Approaches for Elimination and Prevention of Intramammary Infections During the Dry Period: A Systematic Review and Meta-Analysis.

  • Fidèle Kabera‎ et al.
  • Frontiers in veterinary science‎
  • 2021‎

A systematic review and a series of meta-analyses were conducted to investigate the efficacy of selective dry cow antimicrobial treatment (SDCT) (in which only infected quarters/cows were treated with an antimicrobial) compared with blanket dry cow treatment (BDCT) (all quarters/all cows received an antimicrobial, regardless of their infection status). A full detailed protocol was published before initiating this review. Studies reporting on the (1) proportion of untreated quarters or cows when using SDCT, (2) intramammary infection (IMI) incidence risk over the dry period, (3) IMI elimination risk, (4) post-calving IMI prevalence, (5) early lactation clinical mastitis incidence, or (6) subsequent lactation milk yield and somatic cell counts were considered eligible. Thirteen articles representing 12 controlled trials, whether randomized or not, were available for analyses. SDCT reduced the use of antimicrobials at dry off by 66% (95% CI: 49-80). There was no difference in the elimination of existing IMI at dry off, between SDCT and BDCT. Meta-regression showed that the risk of IMI incidence during the dry period, IMI risk at calving, early lactation clinical mastitis risk, and early lactation milk yield and somatic cell counts did not differ between SDCT and BDCT as long as an internal teat sealant (65% bismuth subnitrate) was administered to untreated healthy quarters/cows at dry off. For trials not using internal teat sealants, SDCT resulted in higher risk than BDCT of acquiring a new IMI during the dry period and of harboring an IMI at calving. Lines of evidence strongly support that SDCT would reduce the use of antimicrobials at dry off, without any detrimental effect on udder health or milk production during the 1st months of the subsequent lactation, if, and only if, internal teat sealants are used for healthy, untreated quarters/cows.


Rumen-protected methionine supplementation alters lipid profile of preimplantation embryo and endometrial tissue of Holstein cows.

  • Stephanie L Stella‎ et al.
  • Frontiers in veterinary science‎
  • 2023‎

Our objective is to evaluate the effects of feeding rumen-protected Met (RPM) throughout the transition period and early lactation on the lipid profile of the preimplantation embryos and the endometrial tissue of Holstein cows. Treatments consisted of feeding a total mixed ration with top-dressed RPM (Smartamine® M, Adisseo, Alpharetta, GA, United States; MET; n = 11; RPM at a rate of 0.08% of DM: Lys:Met = 2.8:1) or not (CON; n = 9, Lys:Met = 3.5:1). Endometrial biopsies were performed at 15, 30, and 73 days in milk (DIM). Prior to the endometrial biopsy at 73 DIM, preimplantation embryos were harvested via flushing. Endometrial lipid profiles were analyzed using multiple reaction monitoring-profiling and lipid profiles of embryos were acquired using matrix assisted laser desorption/ionization mass spectrometry. Relative intensities levels were used for principal component analysis. Embryos from cows in MET had greater concentration of polyunsaturated lipids than embryos from cows in CON. The endometrial tissue samples from cows in MET had lesser concentrations of unsaturated and monounsaturated lipids at 15 DIM, and greater concentration of saturated, unsaturated (specifically diacylglycerol), and monounsaturated (primarily ceramides) lipids at 30 DIM than the endometrial tissue samples from cows in CON. In conclusion, feeding RPM during the transition period and early lactation altered specific lipid classes and lipid unsaturation level of preimplantation embryos and endometrial tissue.


Seroprevalence and Molecular Identification of Brucella spp. in Bovines in Pakistan-Investigating Association With Risk Factors Using Machine Learning.

  • Aman Ullah Khan‎ et al.
  • Frontiers in veterinary science‎
  • 2020‎

Bovine brucellosis is a global zoonosis of public health importance. It is an endemic disease in many developing countries including Pakistan. This study aimed to estimate the seroprevalence and molecular detection of bovine brucellosis and to assess the association of potential risk factors with test results. A total of 176 milk and 402 serum samples were collected from cattle and buffaloes in three districts of upper Punjab, Pakistan. Milk samples were investigated using milk ring test (MRT), while sera were tested by Rose-Bengal plate agglutination test (RBPT) and indirect enzyme-linked immunosorbent assay (i-ELISA). Real-time PCR was used for detection of Brucella DNA in investigated samples. Anti-Brucella antibodies were detected in 37 (21.02%) bovine milk samples using MRT and in 66 (16.4%) and 71 (17.7%) bovine sera using RBPT and i-ELISA, respectively. Real-time PCR detected Brucella DNA in 31 (7.71%) from a total of 402 bovine sera and identified as Brucella abortus. Seroprevalence and molecular identification of bovine brucellosis varied in some regions in Pakistan. With the use of machine learning, the association of test results with risk factors including age, animal species/type, herd size, history of abortion, pregnancy status, lactation status, and geographical location was analyzed. Machine learning confirmed a real observation that lactation status was found to be the highest significant factor, while abortion, age, and pregnancy came second in terms of significance. To the authors' best knowledge, this is the first time to use machine learning to assess brucellosis in Pakistan; this is a model that can be applied for other developing countries in the future. The development of control strategies for bovine brucellosis through the implementation of uninterrupted surveillance and interactive extension programs in Pakistan is highly recommended.


MicroRNA-199a-3p regulates proliferation and milk fat synthesis of ovine mammary epithelial cells by targeting VLDLR.

  • Jiqing Wang‎ et al.
  • Frontiers in veterinary science‎
  • 2022‎

In our previous study, microRNA (miR)-199a-3p was found to be the most upregulated miRNA in mammary gland tissue during the non-lactation period compared with the peak-lactation period. However, there have been no reports describing the function of miR-199a-3p in ovine mammary epithelial cells (OMECs) and the biological mechanisms by which the miRNA affects cell proliferation and milk fat synthesis in sheep. In this study, the effect of miR-199a-3p on viability, proliferation, and milk fat synthesis of OMECs was investigated, and the target relationship of the miRNA with very low-density lipoprotein receptor (VLDLR) was also verified. Transfection with a miR-199a-3p mimic increased the viability of OMECs and the number of Edu-labeled positive OMECs. In contrast, a miR-199-3p inhibitor had the opposite effect with the miR-199a-3p mimic. The expression levels of three marker genes were also regulated by both the miR-199a-3p mimic and miR-199-3p inhibitor in OMECs. Together, these results suggest that miR-199a-3p promotes the viability and proliferation of OMECs. A dual luciferase assay confirmed that miR-199a-3p can target VLDLR by binding to the 3'-untranslated regions (3'UTR) of the gene. Further studies found a negative correlation in the expression of miR-199a-3p with VLDLR. The miR-199a-3p mimic decreased the content of triglycerides, as well as the expression levels of six milk fat synthesis marker genes in OMECs, namely, lipoprotein lipase gene (LPL), acetyl-CoA carboxylase alpha gene (ACACA), fatty acid binding protein 3 gene (FABP3), CD36, stearoyl-CoA desaturase gene (SCD), and fatty acid synthase gene (FASN). The inhibition of miR-199a-3p increased the level of triglycerides and the expression of LPL, ACACA, FABP3, SCD, and FASN in OMECs. These findings suggest that miR-199a-3p inhibited milk fat synthesis of OMECs. This is the first study to reveal the molecular mechanisms by which miR-199a-3p regulates the proliferation and milk fat synthesis of OMECs in sheep.


Large litter size increases oxidative stress and adversely affects nest-building behavior and litter characteristics in primiparous sows.

  • Juho Lee‎ et al.
  • Frontiers in veterinary science‎
  • 2023‎

The study examined 24 primiparous sows (Landrace × Large white) and their offspring, which were grouped based on litter size: NORMAL (n = 8, average litter size 11.5 ± 1.2), with litter size between 7 and 14, and LARGE (n = 16, average litter size 15.9 ± 1.0), with litter size between 15 and 20. Sows were group-housed during gestation, and housed in an adjustable loose housing system (2.4 × 2.3 m) during farrowing and lactation. All the sows were confined in the farrowing crates (0.6 × 2.3 m) for 7 days after the onset of parturition. Saliva samples of sows were collected on days 35, 21, and 7 before farrowing (D-35, D-21 and D7, respectively), and on days 1, 7, and 28 after farrowing (D1, D7, and D28, respectively) to measure the levels of Trolox equivalent antioxidant capacity (TEAC), hydrogen peroxide (H2O2), advanced oxidation protein products (AOPP), and tumor necrosis factor-alpha (TNF-α). Colostrum samples were collected for oxytocin and prolactin assays. Nest-building behavior (NB) for 24 h before parturition and farrowing was observed through video analysis. The results showed that LARGE sows had higher levels of H2O2 on D1 and D7 and AOPP during late gestation (p < 0.05, for all) and lower TEAC levels during late gestation and on D7 and D28 after farrowing (p < 0.05, for all) than NORMAL sows. Additionally, LARGE sows tended to have higher levels of TNF-α on D1 and D7 (p < 0.10, for both). LARGE sows showed shorter duration and lower frequency of NB during 24-12 h before parturition (p < 0.05, for both), and tended to have lower prolactin levels (p = 0.10). Furthermore, large sows tended to show longer farrowing duration and higher stillbirth rate (p = 0.06, p = 0.07, respectively). In conclusion, this study confirmed that large litter size may increase oxidative stress in sows during late gestation and lactation. The data also suggested that this could adversely impact prolactin release, leading to reduced NB.


Animal Welfare and Economic Aspects of Using Nurse Sows in Swedish Pig Production.

  • Karin Alvåsen‎ et al.
  • Frontiers in veterinary science‎
  • 2017‎

The number of born piglets per litter has increased in Swedish pig industry, and farmers are struggling to improve piglet survival. A common practice is to make litters more equally sized by moving piglets from large litters to smaller to make sure that all piglets get an own teat to suckle. Litter equalization is not always enough, as many sows have large litters and/or damaged teats, which results in an insufficient number of available teats. One way to solve this problem is to use nurse sows. A nurse sow raises, and weans, her own piglets before receiving a foster litter. The objectives of this study were to address how the use of nurse sows affects the welfare of sows and piglets and to explore how it impacts the contribution margin of pig production in Sweden. A literature search was made to investigate welfare aspects on sows and piglets. As there were few published studies on nurse sows, an expert group meeting was organized. In order to explore the impact on the contribution margin of pig production, a partial budgeting approach with stochastic elements was used for a fictive pig farm. Standard templates for calculating costs and benefits were supplemented with figures from existing literature and the gathered expert opinions. In Sweden, the minimum suckling period is 28 days while published studies involving nurse sows, all from outside of Sweden, weaned the piglets at 21 days. A Swedish nurse sow will thus get longer lactation period which might increase the risk of poor body condition, damaged teats, and shoulder ulcers. This indicates a reduced welfare of the sow and may lead to impaired fertility and increased culling risk. On the other hand, the piglet mortality could be reduced with the use of nurse sows, but the separation and mixing of piglets could be stressful. The partial budgeting suggested that the nurse sow system is slightly more profitable (+6,838 Swedish krona) per farrowing group during one dry and one lactation period compared to the conventional system. The result is, however, highly dependent on the input values, and welfare aspects were not considered in the calculations.


Antimicrobial Susceptibility Patterns of Environmental Streptococci Recovered from Bovine Milk Samples in the Maritime Provinces of Canada.

  • Marguerite Cameron‎ et al.
  • Frontiers in veterinary science‎
  • 2016‎

Determination of antimicrobial susceptibility of bovine mastitis pathogens is important for guiding antimicrobial treatment decisions and for the detection of emerging resistance. Environmental streptococci are ubiquitous in the farm environment and are a frequent cause of mastitis in dairy cows. The aim of the study was to determine patterns of antimicrobial susceptibility among species of environmental streptococci isolated from dairy cows in the Maritime Provinces of Canada. The collection consisted of 192 isolates identified in milk samples collected from 177 cows originating from 18 dairy herds. Results were aggregated into: (1) Streptococcus uberis (n = 70), (2) Streptococcus dysgalactiae (n = 28), (3) other Streptococci spp. (n = 35), (4), Lactococcus spp. (n = 32), and (5) Enterococcus spp. (n = 27). Minimum inhibitory concentrations (MICs) were determined using the Sensititre microdilution system and mastitis plate format. Multilevel logistic regression models were used to analyze the data, with antimicrobial susceptibility as the outcome. The proportion of susceptible S. uberis ranged from 23% (for penicillin) to 99% (for penicillin/novobiocin), with a median of 82%. All S. dysgalactiae were susceptible to all antimicrobials except for penicillin (93% susceptible) and tetracycline (18% susceptible). The range of susceptibility for other Streptococcus spp. was 43% (for tetracycline) to 100%, with a median percent susceptibility of 92%. Lactococcus spp. isolates displayed percent susceptibilities ranging from 0% (for penicillin) to 97% (for erythromycin), median 75%. For the antimicrobials tested, the minimum inhibitory concentrations were higher for Enterococcus spp. than for the other species. According to the multilevel models, there was a significant interaction between antimicrobial and bacterial species, indicating that susceptibility against a particular antimicrobial varied among the species of environmental streptococci and vice versa. Generally, susceptibility decreased with increasing within-herd average somatic cell count, isolates recovered in mid-lactation were more susceptible than isolates recovered in early lactation, and isolates recovered in samples collected post-clinical mastitis were more susceptible than isolates recovered from non-clinical lactating quarters. The results of this research support continued susceptibility of environmental streptococci to beta-lactam antimicrobials. A departure from the expected susceptibility to beta-lactams was the apparent reduced susceptibility of S. uberis to penicillin.


A Randomized Controlled Trial of Teat-Sealant and Antibiotic Dry-Cow Treatments for Mastitis Prevention Shows Similar Effect on the Healthy Milk Microbiome.

  • Filippo Biscarini‎ et al.
  • Frontiers in veterinary science‎
  • 2020‎

Lactating cows are routinely treated at dry-off with antibiotic infusions in each quarter for the cure and prevention of pathogenic intramammary infection, which remains the most common disease in dairy herds. This approach is known as blanket dry-cow therapy, usually effective for the prevention and cure of infections, but has been shown to potentially contribute to the emergence and spreading of antibiotic resistant bacterial strains. Exploring the use of non-antibiotic treatments coupled with selective dry-cow therapy is necessary to reduce the risk of antibiotic resistance and potential interference with milk microbiome balance. The impact of selective dry-cow therapy on the physiological milk microbiome needs to be carefully evaluated. In this small-scale trial, five healthy (no mastits, SCC <200,000 cells mL-1) second-parity cows from dry-off to 5 days after calving were sampled. For every cow, each quarter received a different treatment: (i) bismuth salnitrate (internal teat sealant, OrbSeal®, Zoetis, Italy), front right quarter; (ii) cephalonium dihydrate (Cepravin®, MSD, Italy), rear right quarter; (iii) benzathine cloxacillin (Cloxalene dry, Ati, Italy), rear left quarter. No treatment was applied to the remaining quarter (front left) which served as experimental control. For 16S rRNA gene sequencing, bacterial DNA was extracted from 5 ml of milk samples, amplified using the primers for the V3-V4 hypervariable regions and sequenced in one MiSeq (Illumina) run with 2 × 250-base paired-end reads. Bacteriological results confirmed that the quarters were all healthy. The phyla Proteobacteria, Firmicutes, and Actinobacteria were the most abundant for all treatments and controls at all three timepoints, accounting for over 80% of the entire milk microbiota composition. No significant differences were found between treatments and controls in terms of the major alpha and beta diversity indexes, revealing that antibiotic, and non-antibiotic treatments for selective dry-cow therapy did not alter significantly the milk microbiome of dairy cows. The milk microbiota composition showed a clear evolution over the lactation cycle, and the overall changes in the milk microbiota diversity over the lactation cycle were mainly independent of treatments.


Bacteriophage Protects Against Aerococcus viridans Infection in a Murine Mastitis Model.

  • Hengyu Xi‎ et al.
  • Frontiers in veterinary science‎
  • 2020‎

Bovine mastitis, an inflammatory disease that occurs frequently in early lactation or the dry period, is primarily caused by bacterial infections. There is growing evidence that Aerococcus viridans (A. viridans) is becoming an important cause of bovine mastitis. The treatment of bovine mastitis is primarily based on antibiotics, which not only leads to a large economic burden but also the development of antibiotic resistance. On the other hand, bacteriophages present a promising alternative treatment strategy. The object of this study was to evaluate the potential of a previously isolated A. viridans phage vB_AviM_AVP (AVP) as an anti-mastitis agent in an experimental A. viridans-induced murine mastitis model. A. viridans N14 was isolated from the milk of clinical bovine mastitis and used to establish a mastitis model in mice. We demonstrated that administration of phage AVP significantly reduced colony formation by A. viridans and alleviated damage to breast tissue. In addition, reduced inflammation was indicated by decreased levels of inflammatory cytokines (TNF-α, IL-1β, and IL-6) and myeloperoxidase (MPO) activity in the phage-treated group compared to those in the phosphate buffered saline (PBS)-treated group. To the best of our knowledge, this report is the first to show the potential use of phages as a treatment for A. viridans-induced mastitis.


The Bovine Hepatic Cell Line BFH12 as a Possible Model for Hepatosteatosis in Dairy Cows.

  • Kristin Reichelt‎ et al.
  • Frontiers in veterinary science‎
  • 2022‎

Hepatosteatosis is a common metabolic disorder of dairy cows, especially during early lactation. Currently, there are a few models of bovine hepatic steatosis available, including primary hepatocytes, liver slices, and animal models. Studies that elucidate the influence of single fatty acids on lipid classes, fatty acid pattern, gene expression, and phenotypic changes are still limited. Hence, we investigated the suitability of the fetal bovine hepatocyte-derived cell line BFH12 as a model for hepatosteatosis. To create a steatotic environment, we treated BFH12 with stearic acid, palmitic acid, or oleic acid in non-toxic doses. Thin-layer chromatography and gas chromatography were used to analyze lipid classes and fatty acid pattern, and qPCR was used to quantify gene expression of relevant target genes. Lipid droplets were visualized with confocal laser scanning microscopy and evaluated for number and size. Treatment with oleic acid increased triglycerides, as well as lipid droplet count per cell and upregulated carnitine palmitoyl transferase 1, which correlates with findings of in vivo models. Oleic acid was largely incorporated into triglycerides, phospholipids, and non-esterified fatty acids. Stearic acid was found mainly in non-esterified fatty acids and triglycerides, whereas palmitic acid was mainly desaturated to palmitoleic acid. All three fatty acids downregulated stearyl-CoA-desaturase 1. In conclusion, BFH12 can acquire a steatotic phenotype by incorporating and accumulating fatty acids. Oleic acid is particularly suitable to produce hepatosteatosis. Therefore, BFH12 may be a useful in vitro model to study bovine hepatosteatosis and its underlying molecular mechanisms.


The Ability of an Algoclay-Based Mycotoxin Decontaminant to Decrease the Serum Levels of Zearalenone and Its Metabolites in Lactating Sows.

  • Xandra Benthem de Grave‎ et al.
  • Frontiers in veterinary science‎
  • 2021‎

This study evaluated the effect of an algoclay-based mycotoxin decontaminant on the levels of ZEN, DON, and their derivatives in the colostrum, milk, and serum of sows, as well as in the serum of weaned piglets after maternal mycotoxin exposure during the last week of gestation and during lactation of sows (26 days). For this, sows (n = 5) were fed diets artificially contaminated with 100 (LoZEN) or 300 (HiZEN) ppb ZEN, with or without an algoclay-based mycotoxin decontaminant in the highly contaminated diet. All diets contained 250 ppb deoxynivalenol (DON). Dietary treatments did not affect the performance of the sows and piglets. Only α-ZEL was significantly increased in the colostrum of sows fed the HiZEN diet, and this increase was even higher in the colostrum of the sows fed the HiZEN diet supplemented with the test decontaminant. However, no differences in milk mycotoxin levels were observed at weaning. The highest levels of ZEN, α-ZEL, and β-ZEL were observed in the serum of sows fed the HiZEN diet. When the HiZEN diet was supplemented with the tested algoclay-based mycotoxin decontaminant the levels of ZEN and its metabolites were significantly decreased in the serum of sows. Although all sows were fed the same levels of DON, the serum level of de-epoxy-DON was increased only in the serum of piglets from the sows fed a diet with the non-supplemented HiZEN diet. In conclusion, the tested algoclay-based mycotoxin decontaminant can decrease the levels of ZEN and its metabolites in the serum of sows and the level of de-DON in the serum of piglets.


GC/MS and LC/MS Based Serum Metabolomic Analysis of Dairy Cows With Ovarian Inactivity.

  • Yunlong Bai‎ et al.
  • Frontiers in veterinary science‎
  • 2021‎

Metabolic disorders may lead to the inactive ovaries of dairy cows during early lactation. However, the detailed metabolic profile of dairy cows with inactive ovaries around 55 days postpartum has not been clearly elucidated. The objective of this study was to investigate the metabolic difference in cows with inactive ovaries and estrus from the perspective of serum metabolites. According to clinical manifestations, B-ultrasound scan, rectal examination, 15 cows were assigned to the estrus group (E; follicular diameter 15-20 mm) and 15 to the inactive ovary group (IO; follicular diameter <8 mm and increased <2 mm within 5 days over two examinations). The blood was collected from the tail vein of the cow to separate serum 55-60 days postpartum, and then milked and fasted in the morning. Serum samples were analyzed using gas chromatography time-of-flight mass spectrometry technology (GC-TOF-MS) and ultra-high-pressure liquid chromatography-quadrupole-time-of-flight mass spectrometry (UHPLC-QTOF-MS). Differences in serum metabolites were identified using multivariate statistical analysis and univariate analysis. Thirty differentially abundant metabolites were identified between the two groups. In cows with inactive ovaries compared with cows in estrus, 20 serum metabolites were significantly higher (beta-cryptoxanthin (p = 0.0012), 9-cis-retinal (p = 0.0030), oxamic acid (p = 0.0321), etc.) while 10 metabolites were significantly lower (monostearin (p = 0.0001), 3-hydroxypropionic acid (p = 0.0005), D-talose (p = 0.0018), etc.). Pathway analysis indicated that the serum differential metabolites of multiparous cows in estrus obtained by the two metabolomics techniques were mainly involved in β-alanine metabolism and steroid biosynthesis metabolism, while other involved metabolic pathways were related to metabolism of glyoxylate; dicarboxylate metabolism; fructose, mannose, glutathione, glycerolipid, glycine, serine, threonine, propanoate, retinol, and pyrimidine metabolism. This indicates that the abnormalities in glucose metabolism, lipid metabolism, amino acid metabolism, and glutathione metabolism of postpartum dairy cows obstructed follicular development.


Comparison of Metabolic Alterations in Serum and Milk Whey Between Inactive Ovaries and Estrus Dairy Cows.

  • Chang Zhao‎ et al.
  • Frontiers in veterinary science‎
  • 2020‎

Inactive ovaries (IOs) affect the estrus cycle and timed artificial insemination (TAI) efficiency in dairy cows during early lactation. The objective of the experiment was to determine metabolic changes in the serum and milk whey of dairy cows with IO and estrus. Twenty-eight healthy postpartum Holstein cows in similar age, milk production, and body condition were selected at 30 days postpartum for tracking to 70 days postpartum, and estrus performance was recorded through Afi Farm® software. The ovarian status and follicular diameter of dairy cows were examined by an experienced breeder through B-ultrasound and rectal examination. Fourteen normal estrus cows were allocated to control group A and 14 cows with IO to group B, all at 30-70 days postpartum. The serum and milk whey in the two groups of cows at 70 days postpartum were used for non-targeted nuclear magnetic resonance (1H-NMR) analysis to measure the different metabolites of cows with IO. In group B compared with group A at 70 days postpartum, there was an increase in the milk whey of six different metabolites including succinate, creatine phosphate, glycine, myo-inositol, glycolate, and orotate and a decrease in the milk whey of seven metabolites, including alanine, creatinine, o-phosphorylcholine, lactose, taurine, galactose, and glucose-1-phosphate. There was an increase in the serum of group B cows of four differential metabolites, including 3-hydroxybutyrate, acetate, glutamine, and glycine and a decrease in the serum of nine differential metabolites, including alanine, succinate, citrate, creatinine, o-phosphocholine, glucose, myo-inositol, tyrosine, and histidine compared with group A. Group B cows with IO had decreased glucose metabolism and impaired tricarboxylic acid cycle, increased lipid mobilization, and abnormal amino acid metabolism. The study provides a potential prevention strategy for IO in dairy cows in future.


Meeting Breeding Potential in Organic and Low-Input Dairy Farming.

  • Hannah Davis‎ et al.
  • Frontiers in veterinary science‎
  • 2020‎

Low-input (LI) dairy farming, relying heavily on grazing, is increasing in popularity for perceived sustainability, welfare, and milk nutritional quality benefits. However, there is little research into the breed suitability for these systems. The popular Holstein-Friesians are not well-suited to LI production as, to achieve their potential high yields, they require high levels of concentrate intakes and veterinary inputs. Holstein-Friesians were traditionally bred for high milk yields, which often correlate negatively with functional traits, such as fertility and health. This drives the need for alternative breed choices, and UK dairy farmers use several crossbreeding practices. Additionally, classic measures of production efficiency (kilogram feed per liter of milk) are not the sole priority in LI systems, which also aim for improved health, fertility, forage conversion, and milk quality. This study aimed to explore the effect of breeding strategy on LI and organic production in dairy systems, collecting data from 17 farms throughout England and Wales: 7 organic and 10 low-input conventional systems with both purebred and crossbred cows from different breeds. Records from 1,070 cows were collected, including background data, health, fertility, breeding, and parity. Additionally, milk was analyzed on four occasions (autumn 2011 and winter, spring, and summer 2012). Principal components analysis was used to visualize the effect of management, Farm ID, and stage of lactation on LI production. The analysis clustered cows by Farm ID, showing that individual management practice on each farm had the greatest impact on various production traits. Cows were allocated a composite score based on their yield, health records, and milk fatty acid profile, and a linear mixed-effects model indicated (p < 0.01) that crossbred New Zealand Friesian cows scored highest, whereas Dairy Shorthorn cows scored the lowest. This paper highlights weaknesses in current breeding programs for LI and organic farms in the UK, in terms of the alignment of breeds with husbandry practices. Additional research is needed to explore any gene by environment interactions to meet the true potential of individual cows and certain breeds under LI and organic management.


A Fixed Cohort Field Study of Gene Expression in Circulating Leukocytes From Dairy Cows With and Without Mastitis.

  • Craig S McConnel‎ et al.
  • Frontiers in veterinary science‎
  • 2020‎

Specifically designed gene expression studies can be used to prioritize candidate genes and identify novel biomarkers affecting resilience against mastitis and other diseases in dairy cattle. The primary goal of this study was to assess whether specific peripheral leukocyte genes expressed differentially in a previous study of dairy cattle with postpartum disease, also would be expressed differentially in peripheral leukocytes from a diverse set of different dairy cattle with moderate to severe clinical mastitis. Four genes were selected for this study due to their differential expression in a previous transcriptomic analysis of circulating leukocytes from dairy cows with and without evidence of early postpartum disease. An additional 15 genes were included based on their cellular, immunologic, and inflammatory functions associated with resistance and tolerance to mastitis. This fixed cohort study was conducted on a conventional dairy in Washington state. Cows >50 days in milk (DIM) with mastitis (n = 12) were enrolled along with healthy cows (n = 8) selected to match the DIM and lactation numbers of mastitic cows. Blood was collected for a complete blood count (CBC), serum biochemistry, leukocyte isolation, and RNA extraction on the day of enrollment and twice more at 6 to 8-days intervals. Latent class analysis was performed to discriminate healthy vs. mastitic cows and to describe disease resolution. RNA samples were processed by the Primate Diagnostic Services Laboratory (University of Washington, Seattle, WA). Gene expression analysis was performed using the Nanostring System (Nanostring Technologies, Seattle, Washington, USA). Of the four genes (C5AR1, CATHL6, LCN2, and PGLYRP1) with evidence of upregulation in cows with mastitis, three of those genes (CATHL6, LCN2, and PGLYRP1) were investigated due to their previously identified association with postpartum disease. These genes are responsible for immunomodulatory molecules that selectively enhance or alter host innate immune defense mechanisms and modulate pathogen-induced inflammatory responses. Although further research is warranted to explain their functional mechanisms and bioactivity in cattle, our findings suggest that these conserved elements of innate immunity have the potential to bridge disease states and target tissues in diverse dairy populations.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: