Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

Expression of Lactate Dehydrogenase in Aspergillus niger for L-Lactic Acid Production.

  • Khyati K Dave‎ et al.
  • PloS one‎
  • 2015‎

Different engineered organisms have been used to produce L-lactate. Poor yields of lactate at low pH and expensive downstream processing remain as bottlenecks. Aspergillus niger is a prolific citrate producer and a remarkably acid tolerant fungus. Neither a functional lactate dehydrogenase (LDH) from nor lactate production by A. niger is reported. Its genome was also investigated for the presence of a functional ldh. The endogenous A. niger citrate synthase promoter relevant to A. niger acidogenic metabolism was employed to drive constitutive expression of mouse lactate dehydrogenase (mldhA). An appraisal of different branches of the A. niger pyruvate node guided the choice of mldhA for heterologous expression. A high copy number transformant C12 strain, displaying highest LDH specific activity, was analyzed under different growth conditions. The C12 strain produced 7.7 g/l of extracellular L-lactate from 60 g/l of glucose, in non-neutralizing minimal media. Significantly, lactate and citrate accumulated under two different growth conditions. Already an established acidogenic platform, A. niger now promises to be a valuable host for lactate production.


Influence of L-lactate and low glucose concentrations on the metabolism and the toxin formation of Clostridioides difficile.

  • Julia Danielle Hofmann‎ et al.
  • PloS one‎
  • 2021‎

The virulence of Clostridioides difficile (formerly Clostridium difficile) is mainly caused by its two toxins A and B. Their formation is significantly regulated by metabolic processes. Here we investigated the influence of various sugars (glucose, fructose, mannose, trehalose), sugar derivatives (mannitol and xylitol) and L-lactate on toxin synthesis. Fructose, mannose, trehalose, mannitol and xylitol in the growth medium resulted in an up to 2.2-fold increase of secreted toxin. Low glucose concentration of 2 g/L increased the toxin concentration 1.4-fold compared to growth without glucose, while high glucose concentrations in the growth medium (5 and 10 g/L) led to up to 6.6-fold decrease in toxin formation. Transcriptomic and metabolic investigation of the low glucose effect pointed towards an inactive CcpA and Rex regulatory system. L-lactate (500 mg/L) significantly reduced extracellular toxin formation. Transcriptome analyses of the later process revealed the induction of the lactose utilization operon encoding lactate racemase (larA), electron confurcating lactate dehydrogenase (CDIF630erm_01321) and the corresponding electron transfer flavoprotein (etfAB). Metabolome analyses revealed L-lactate consumption and the formation of pyruvate. The involved electron confurcation process might be responsible for the also observed reduction of the NAD+/NADH ratio which in turn is apparently linked to reduced toxin release from the cell.


Identification of the genes that contribute to lactate utilization in Helicobacter pylori.

  • Shun Iwatani‎ et al.
  • PloS one‎
  • 2014‎

Helicobacter pylori are Gram-negative, spiral-shaped microaerophilic bacteria etiologically related to gastric cancer. Lactate utilization has been implicated although no corresponding genes have been identified in the H. pylori genome. Here, we report that gene products of hp0137-0139 (lldEFG), hp0140-0141 (lctP), and hp1222 (dld) contribute to D- and L-lactate utilization in H. pylori. The three-gene unit hp0137-0139 in H. pylori 26695 encodes L-lactate dehydrogenase (LDH) that catalyzes the conversion of lactate to pyruvate in an NAD-dependent manner. Isogenic mutants of these genes were unable to grow on L-lactate-dependent medium. The hp1222 gene product functions as an NAD-independent D-LDH and also contributes to the oxidation of L-lactate; the isogenic mutant of this gene failed to grow on D-lactate-dependent medium. The parallel genes hp0140-0141 encode two nearly identical lactate permeases (LctP) that promote uptake of both D- and L-lactate. Interestingly an alternate route must also exist for lactate transport as the knockout of genes did not completely prevent growth on D- or L-lactate. Gene expression levels of hp0137-0139 and hp1222 were not enhanced by lactate as the carbon source. Expression of hp0140-0141 was slightly suppressed in the presence of L-lactate but not D-lactate. This study identified the genes contributing to the lactate utilization and demonstrated the ability of H. pylori to utilize both D- and L-lactate.


Embryonic protein undernutrition by albumen removal programs the hepatic amino acid and glucose metabolism during the perinatal period in an avian model.

  • Els Willems‎ et al.
  • PloS one‎
  • 2014‎

Different animal models have been used to study the effects of prenatal protein undernutrition and the mechanisms by which these occur. In mammals, the maternal diet is manipulated, exerting both direct nutritional and indirect hormonal effects. Chicken embryos develop independent from the hen in the egg. Therefore, in the chicken, the direct effects of protein deficiency by albumen removal early during incubation can be examined. Prenatal protein undernutrition was established in layer-type eggs by the partial replacement of albumen by saline at embryonic day 1 (albumen-deprived group), compared to a mock-treated sham and a non-treated control group. At hatch, survival of the albumen-deprived group was lower compared to the control and sham group due to increased early mortality by the manipulation. No treatment differences in yolk-free body weight or yolk weight could be detected. The water content of the yolk was reduced, whereas the water content of the carcass was increased in the albumen-deprived group, compared to the control group, indicating less uptake of nutrients from the yolk. At embryonic day 16, 20 and at hatch, plasma triiodothyronine (T3), corticosterone, lactate or glucose concentrations and hepatic glycogen content were not affected by treatment. At embryonic day 20, the plasma thyroxine (T4) concentrations of the albumen-deprived embryos was reduced compared to the control group, indicating a decreased metabolic rate. Screening for differential protein expression in the liver at hatch using two-dimensional difference gel electrophoresis revealed not only changed abundance of proteins important for amino acid metabolism, but also of enzymes related to energy and glucose metabolism. Interestingly, GLUT1, a glucose transporter, and PCK2 and FBP1, two out of three regulatory enzymes of the gluconeogenesis were dysregulated. No parallel differences in gene expressions causing the differences in protein abundance could be detected pointing to post-transcriptional or post-translational regulation of the observed differences.


Nuclear translocation of β-catenin during mesenchymal stem cells differentiation into hepatocytes is associated with a tumoral phenotype.

  • Carmen Herencia‎ et al.
  • PloS one‎
  • 2012‎

Wnt/β-catenin pathway controls biochemical processes related to cell differentiation. In committed cells the alteration of this pathway has been associated with tumors as hepatocellular carcinoma or hepatoblastoma. The present study evaluated the role of Wnt/β-catenin activation during human mesenchymal stem cells differentiation into hepatocytes. The differentiation to hepatocytes was achieved by the addition of two different conditioned media. In one of them, β-catenin nuclear translocation, up-regulation of genes related to the Wnt/β-catenin pathway, such as Lrp5 and Fzd3, as well as the oncogenes c-myc and p53 were observed. While in the other protocol there was a Wnt/β-catenin inactivation. Hepatocytes with nuclear translocation of β-catenin also had abnormal cellular proliferation, and expressed membrane proteins involved in hepatocellular carcinoma, metastatic behavior and cancer stem cells. Further, these cells had also increased auto-renewal capability as shown in spheroids formation assay. Comparison of both differentiation protocols by 2D-DIGE proteomic analysis revealed differential expression of 11 proteins with altered expression in hepatocellular carcinoma. Cathepsin B and D, adenine phosphoribosyltransferase, triosephosphate isomerase, inorganic pyrophosphatase, peptidyl-prolyl cis-trans isomerase A or lactate dehydrogenase β-chain were up-regulated only with the protocol associated with Wnt signaling activation while other proteins involved in tumor suppression, such as transgelin or tropomyosin β-chain were down-regulated in this protocol. In conclusion, our results suggest that activation of the Wnt/β-catenin pathway during human mesenchymal stem cells differentiation into hepatocytes is associated with a tumoral phenotype.


Application of proteomics to understand the molecular mechanisms determining meat quality of beef muscles during postmortem aging.

  • Bin Yang‎ et al.
  • PloS one‎
  • 2021‎

Proteomics profiling disclosed the molecular mechanism underlying beef poor meat quality. This study aimed to identify protein markers indicating the quality of beef during postmortem storage at 4°C. Beef longissimus dorsi samples were stored at 4°C. The meat water holding capacity (WHC), pH value and moisture content were determined at different time points during the storage period. The iTRAQ MS/MS approach was used to determine the proteomics profiling at 0, 3.5 and 7 d during storage at 4°C. Bioinformatics analysis was performed to investigate the potential correlated proteins associated with meat quality. Storage at 4°C gradually decreased the pH value, WHC, and hence the moisture content. The iTRAQ proteomic analysis revealed that a cluster of glycolytic enzymes including malate dehydrogenase, cytoplasmic, L-lactate dehydrogenase, phosphoglycerate mutase and pyruvate kinase, and another cluster of proteins involved in oxygen transport and binding (myoglobin) and hemoglobin complex (including Globin A1 and hemoglobin subunit alpha) were decreased during the postmortem storage. These results suggest that the decreased glycolysis, oxygen, and heme-binding activities might be associated with the beef muscle low quality and the decline of tenderness during postmortem storage at 4°C.


A proteomic view at T cell costimulation.

  • Rudolf Lichtenfels‎ et al.
  • PloS one‎
  • 2012‎

The "two-signal paradigm" in T cell activation predicts that the cooperation of "signal 1," provided by the T cell receptor (TCR) through engagement of major histocompatility complex (MHC)-presented peptide, with "signal 2″ provided by costimulatory molecules, the prototype of which is CD28, is required to induce T cell effector functions. While the individual signalling pathways are well understood, little is known about global changes in the proteome pattern during TCR/CD28-mediated activation. Therefore, comparative 2-DE-based proteome analyses of CD3(+) CD69(-) resting T cells versus cells incubated with (i) the agonistic anti-CD3 antibody OKT3 mimicking signal 1 in absence or presence of IL-2 and/or with (ii) the agonistic antibody 15E8 triggering CD28-mediated signaling were performed. Differentially regulated spots were defined leading to the identification of proteins involved in the regulation of the metabolism, shaping and maintenance of the cytoskeleton and signal transduction. Representative members of the differentially expressed protein families, such as calmodulin (CALM), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), L-lactate dehydrogenase (LDH), Rho GDP-dissociation inhibitor 2 (GDIR2), and platelet basic protein (CXCL7), were independently verified by flow cytometry. Data provide a detailed map of individual protein alterations at the global proteome level in response to TCR/CD28-mediated T cell activation.


Environmental and nutritional factors that affect growth and metabolism of the pneumococcal serotype 2 strain D39 and its nonencapsulated derivative strain R6.

  • Sandra M Carvalho‎ et al.
  • PloS one‎
  • 2013‎

Links between carbohydrate metabolism and virulence in Streptococcus pneumoniae have been recurrently established. To investigate these links further we developed a chemically defined medium (CDM) and standardized growth conditions that allowed for high growth yields of the related pneumococcal strains D39 and R6. The utilization of the defined medium enabled the evaluation of different environmental and nutritional factors on growth and fermentation patterns under controlled conditions of pH, temperature and gas atmosphere. The same growth conditions impacted differently on the nonencapsulated R6, and its encapsulated progenitor D39. A semi-aerobic atmosphere and a raised concentration of uracil, a fundamental component of the D39 capsule, improved considerably D39 growth rate and biomass. In contrast, in strain R6, the growth rate was enhanced by strictly anaerobic conditions and uracil had no effect on biomass. In the presence of oxygen, the difference in the growth rates was mainly attributed to a lower activity of pyruvate oxidase in strain D39. Our data indicate an intricate connection between capsule production in strain D39 and uracil availability. In this study, we have also successfully applied the in vivo NMR technique to study sugar metabolism in S. pneumoniae R6. Glucose consumption, end-products formation and evolution of intracellular metabolite pools were monitored online by (13)C-NMR. Additionally, the pools of NTP and inorganic phosphate were followed by (31)P-NMR after a pulse of glucose. These results represent the first metabolic profiling data obtained non-invasively for S. pneumoniae, and pave the way to a better understanding of regulation of central metabolism.


The risk factors for mortality of diabetic patients with severe COVID-19: A retrospective study of 167 severe COVID-19 cases in Wuhan.

  • Yan Hui‎ et al.
  • PloS one‎
  • 2020‎

Diabetes is one of the most common comorbidities in adult patients with coronavirus disease 2019 (COVID-19). This study aimed to analyze the mortality risk factors of diabetic patients with COVID-19. A total of 167 patients with severe COVID-19, including 55 diabetic patients and 112 nondiabetic patients at Tongji Hospital, Wuhan, China from January 28, 2020, to March 10, 2020, were collected. The laboratory, radiological, management information, and medical history was retrospectively reviewed. Potential mortality risk factors in diabetic patients with COVID-19 were evaluated by the proportional hazard Cox model. The clinical information of 167 patients with severe COVID-19 was analyzed. The median age was 65.0 years. Approximately 32.9% of patients had diabetes. In total patients, older age, diabetes, and lymphocyte count were associated with increased risk of death. In diabetic patients, increased mortality was associated with decreased lymphocyte count (≤0.45×10⁹/L, HR 0.196, 95% CI 0.049-0.781, P = 0.021), lactate dehydrogenase >600 U/L (HR 8.010, 95% CI 1.540-41.670, P = 0.013), hsCRP >90 mg/L (HR 4.551, 95% CI 1.472-14.070, P = 0.009) and interleukin-10 >10 U/mL (HR 5.362, 95% CI 1.239-23.199, P = 0.025). COVID-19 patients with diabetes had a poor prognosis, especially when they had two or more of the following abnormalities (χ2 = 58.62, P<0.001): lymphocyte count was ≤0.45×10⁹/L, lactate dehydrogenase was >600 U/L, hsCRP was >90 mg/L and IL-10 was >10 U/mL. For diabetic patients with COVID-19, more attention should be paid to the dynamic monitoring of cytokine levels, and the control of hyperglycemia.


Integrated genome-based probiotic relevance and safety evaluation of Lactobacillus reuteri PNW1.

  • Kazeem Adekunle Alayande‎ et al.
  • PloS one‎
  • 2020‎

This study evaluates whole-genome sequence of Lactobacillus reuteri PNW1 and identifies its safety genes that may qualify it as a putative probiotic. It further extracted the bacteriocin produced by the strain and tested its effectiveness against pathogenic STEC E. coli O177. The genomic DNA was sequenced on illuminal Miseq instrument and the sequenced data was assessed for quality reads before assembled with SPAdes. The draft assembly was annotated with Prokaryotic Genome Annotation Pipeline (PGAP) and Rapid Annotations using Subsystems Technology (RAST). Further downstream analyses were carried out using appropriate bioinformatic tools. Production of biogenic amines was biochemically confirmed through HPLC analysis. The assembled genome was 2,430,215 bp long in 420 contigs with 39% G+C content. Among all known genes, putatively responsible for the production of toxic biochemicals, only arginine deiminase (EC3.5.3.6) was spotted. Coding sequences (CDS) putative for D-lactate dehydrogenase (EC1.1.1.28), L-lactate dehydrogenase (EC1.1.1.27) and bacteriocin helveticin J were found within the genome together with plethora of other probiotic important genes. The strain harbours only resistant genes putative for Lincosamide (lnuC) and Tetracycline resistant genes (tetW). There was no hit found for virulence factors and probability of the strain being a human pathogen was zero. Two intact prophage regions were detected within the genome of L. reuteri PNW1 and nine CDS were identified for insertion sequence by OASIS which are belong to seven different families. Five putative CDS were identified for the CRISPR, each associated with Cas genes. Maximum zone of inhibition exhibited by the bacteriocin produced L. reuteri PNW1 is 20.0±1.00 mm (crude) and 23.3±1.15 mm (at 0.25 mg/ml) after being partially purified. With the strain predicted as non-human pathogen, coupled with many other identified desired features, L. reuteri PNW1 stands a chance of making good and safe candidates for probiotic, though further in-vivo investigations are still necessary.


Proteomics-Based Identification and Analysis of Proteins Associated with Helicobacter pylori in Gastric Cancer.

  • Jianjiang Zhou‎ et al.
  • PloS one‎
  • 2016‎

Helicobacter pylori (H. pylori) is a spiral-shaped Gram-negative bacterium that causes the most common chronic infection in the human stomach. Approximately 1%-3% of infected individuals develop gastric cancer. However, the mechanisms by which H. pylori induces gastric cancer are not completely understood. The available evidence indicates a strong link between the virulence factor of H. pylori, cytotoxin-associated gene A (CagA), and gastric cancer. To further characterize H. pylori virulence, we established three cell lines by infecting the gastric cancer cell lines SGC-7901 and AGS with cagA+ H. pylori and transfecting SGC-7901 with a vector carrying the full-length cagA gene. We detected 135 differently expressed proteins from the three cell lines using proteome technology, and 10 differential proteins common to the three cell lines were selected and identified by LC-MS/MS as well as verified by western blot: β-actin, L-lactate dehydrogenase (LDH), dihydrolipoamide dehydrogenase (DLD), pre-mRNA-processing factor 19 homolog (PRPF19), ATP synthase, calmodulin (CaM), p64 CLCP, Ran-specific GTPase-activating protein (RanGAP), P43 and calreticulin. Detection of the expression of these proteins and genes encoding these proteins in human gastric cancer tissues by real-time PCR (RT-qPCR) and western blot revealed that the expression of β-ACTIN, LDH, DLD, PRPF19 and CaM genes were up-regulated and RanGAP was down-regulated in gastric cancer tissues and/or metastatic lymph nodes compared to peri-cancerous tissues. High gene expression was observed for H. pylori infection in gastric cancer tissues. Furthermore, the LDH, DLD and CaM genes were demethylated at the promoter -2325, -1885 and -276 sites, respectively, and the RanGAP gene was highly methylated at the promoter -570 and -170 sites in H. pylori-infected and cagA-overexpressing cells. These results provide new insights into the molecular pathogenesis and treatment targets for gastric cancer with H. pylori infection.


Molecular characterization of Lactobacillus plantarum DMDL 9010, a strain with efficient nitrite degradation capacity.

  • Yong-tao Fei‎ et al.
  • PloS one‎
  • 2014‎

Nitrites commonly found in food, especially in fermented vegetables, are potential carcinogens. Therefore, limiting nitrites in food is critically important for food safety. A Lactobacillus strain (Lactobacillus sp. DMDL 9010) was previously isolated from fermented vegetables by our group, and is not yet fully characterized. A number of phenotypical and genotypical approaches were employed to characterize Lactobacillus sp. DMDL 9010. Its nitrite degradation capacity was compared with four other Lactobacillus strains, including Lactobacillus casei subsp. rhamnosus 719, Lactobacillus delbrueckii subsp. bulgaricu 1.83, Streptococcus thermophilus 1.204, and lactobacillus plantarum 8140, on MRS medium. Compared to these four Lactobacillus strains, Lactobacillus sp. DMDL 9010 had a significantly higher nitrite degradation capacity (P<0.001). Based on 16S rDNA sequencing and sequence comparison, Lactobacillus sp. DMDL 9010 was identified as either Lactobacillus plantarum or Lactobacillus pentosus. To further identify this strain, the flanking regions (922 bp and 806 bp upstream and downstream, respectively) of the L-lactate dehydrogenase 1 (L-ldh1) gene were amplified and sequenced. Lactobacillus sp. DMDL 9010 had 98.92 and 76.98% sequence identity in the upstream region with L. plantarum WCFS1 and L. pentosus IG1, respectively, suggesting that Lactobacillu sp. DMDL 9010 is an L. plantarum strain. It was therefore named L. plantarum DMDL 9010. Our study provides a platform for genetic engineering of L. plantarum DMDL 9010, in order to further improve its nitrite degradation capacity.


Akt1-mediated CPR cooling protection targets regulators of metabolism, inflammation and contractile function in mouse cardiac arrest.

  • Jing Li‎ et al.
  • PloS one‎
  • 2019‎

Therapeutic hypothermia initiated during cardiopulmonary resuscitation (CPR) in pre-clinical studies appears to be highly protective against sudden cardiac arrest injury. Given the challenges to implementing CPR cooling clinically, insights into its critical mechanisms of protection could guide development of new CPR drugs that mimic hypothermia effects without the need for physical cooling. Here, we used Akt1-deficient mice that lose CPR hypothermia protection to identify hypothermia targets. Adult female C57BL/6 mice (Akt1+/+ and Akt1+/-) underwent 8 min of KCl-induced asystolic arrest and were randomized to receive hypothermia (30 ± 0.5°C) or normothermia. Hypothermia was initiated during CPR and extended for 1 h after resuscitation. Neurologically scored survival was measured at 72 h. Other outcomes included mean arterial pressure and target measures in heart and brain related to contractile function, glucose utilization and inflammation. Compared to northothermia, hypothermia improved both 2h mean arterial pressure and 72h neurologically intact survival in Akt1+/+ mice but not in Akt1+/- mice. In Akt1+/+ mice, hypothermia increased Akt and GSK3β phosphorylation, pyruvate dehydrogenase activation, and NAD+ and ATP production while decreasing IκBα degradation and NF-κB activity in both heart and brain at 30 min after CPR. It also increased phospholamban phosphorylation in heart tissue. Further, hypothermia reduced metabolic and inflammatory blood markers lactate and Pre-B cell Colony Enhancing Factor. Despite hypothermia treatment, all these effects were reversed in Akt1+/- mice. Taken together, drugs that target Akt1 and its effectors may have the potential to mimic hypothermia-like protection to improve sudden cardiac arrest survival when administered during CPR.


Presence in the pre-surgical fine-needle aspiration of potential thyroid biomarkers previously identified in the post-surgical one.

  • Federica Ciregia‎ et al.
  • PloS one‎
  • 2013‎

Fine-needle aspiration biopsy (FNA) is usually applied to distinguish benign from malignant thyroid nodules. However, cytological analysis cannot always allow a proper diagnosis. We believe that the improvement of the diagnostic capability of pre-surgical FNA could avoid unnecessary thyroidectomy. In a previous study, we performed a proteome analysis to examine FNA collected after thyroidectomy. With the present study, we examined the applicability of these results on pre-surgical FNA. We collected pre-surgical FNA from 411 consecutive patients, and to obtain a correct comparison with our previous results, we processed only benign (n=114), papillary classical variant (cPTC) (n=34) and papillary tall cell variant (TcPTC) (n=14) FNA. We evaluated levels of five proteins previously found up-regulated in thyroid cancer with respect to benign nodules. ELISA and western blot (WB) analysis were used to assay levels of L-lactate dehydrogenase B chain (LDHB), Ferritin heavy chain, Ferritin light chain, Annexin A1 (ANXA1), and Moesin in FNA. ELISA assays and WB analysis confirmed the increase of LDHB, Moesin, and ANXA1 in pre-surgical FNA of thyroid papillary cancer. Sensitivity and specificity of ANXA1 were respectively 87 and 94% for cPTC, 85 and 100% for TcPTC. In conclusion, a proteomic analysis of FNA from patients with thyroid nodules may help to distinguish benign versus malignant thyroid nodules. Moreover, ANXA1 appears to be an ideal candidate given the high sensitivity and specificity obtained from ROC curve analysis.


The AS87_04050 gene is involved in bacterial lipopolysaccharide biosynthesis and pathogenicity of Riemerella anatipestifer.

  • Xiaolan Wang‎ et al.
  • PloS one‎
  • 2014‎

Riemerella anatipestifer is reported worldwide as a cause of septicemic and exudative diseases of domestic ducks. In this study, we identified a mutant strain RA2640 by Tn4351 transposon mutagenesis, in which the AS87_04050 gene was inactivated by insertion of the transposon. Southern blot analysis indicated that only one insertion was found in the genome of the mutant strain RA2640. SDS-PAGE followed by silver staining showed that the lipopolysaccharide (LPS) pattern of mutant strain RA2640 was different from its wild-type strain Yb2, suggesting the LPS was defected. In addition, the phenotype of the mutant strain RA2640 was changed to rough-type, evident by altered colony morphology, autoaggregation ability and crystal violet staining characteristics. Bacterial LPS is a key factor in virulence as well as in both innate and acquired host responses to infection. The rough-type mutant strain RA2640 showed higher sensitivity to antibiotics, disinfectants and normal duck serum, and higher capability of adherence and invasion to Vero cells, compared to its wild-type strain Yb2. Moreover, the mutant strain RA2640 lost the agglutination ability of its wild-type strain Yb2 to R. anatipestifer serotype 2 positive sera, suggesting that the O-antigen is defected. Animal experiments indicated that the virulence of the mutant strain RA2640 was attenuated by more than 100,000-fold, compared to its wild-type strain Yb2. These results suggested that the AS87_04050 gene in R. anatipestifer is associated with the LPS biosynthesis and bacterial pathogenicity.


Distribution dynamics of recombinant Lactobacillus in the gastrointestinal tract of neonatal rats.

  • Sujin Bao‎ et al.
  • PloS one‎
  • 2013‎

One approach to deliver therapeutic agents, especially proteins, to the gastro-intestinal (GI) tract is to use commensal bacteria as a carrier. Genus Lactobacillus is an attractive candidate for use in this approach. However, a system for expressing exogenous proteins at a high level has been lacking in Lactobacillus. Moreover, it will be necessary to introduce the recombinant Lactobacillus into the GI tract, ideally by oral administration. Whether orally administered Lactobacillus can reach and reside in the GI tract has not been explored in neonates. In this study, we have examined these issues in neonatal rats. To achieve a high level of protein expression in Lactobacillus, we tested the impact of three promoters and two backbones on protein expression levels using mRFP1, a red fluorescent protein, as a reporter. We found that a combination of an L-lactate dehydrogenase (ldhL) promoter of Lactobacillus sakei with a backbone from pLEM415 yielded the highest level of reporter expression. When this construct was used to transform Lactobacillus casei, Lactobacillus delbrueckii and Lactobacillus acidophilus, high levels of mRFP1 were detected in all these species and colonies of transformed Lactobacillus appeared pink under visible light. To test whether orally administered Lactobacillus can be retained in the GI tract of neonates, we fed the recombinant Lactobacillus casei to neonatal rats. We found that about 3% of the bacteria were retained in the GI tract of the rats at 24 h after oral feeding with more recombinant Lactobacillus in the stomach and small intestine than in the cecum and colon. No mortality was observed throughout this study with Lactobacillus. In contrast, all neonatal rats died within 24 hours after fed with transformed E. coli. Taken together, our results indicate that Lactobacillus has the potential to be used as a vehicle for the delivery of therapeutic agents to neonates.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: