Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

The occurrence of l-lactate dehydrogenase in the inner mitochondrial compartment of pig liver.

  • Gianluca Paventi‎ et al.
  • Biochemical and biophysical research communications‎
  • 2017‎

Although pig represents a model species in biomedical research including studies dealing with liver patho-physiology, some aspects of liver metabolism need to be addressed. In particular, whether and how pig mitochondria can metabolize l-lactate remains to be established. We show here that pig liver mitochondria (PLM) possess their own l-lactate dehydrogenase (mL-LDH). This was shown both via immunological analysis and by assaying photometrically the L-LDH reaction in solubilised PLM. The mL-LDH reaction shows hyperbolic dependence on the substrate concentration, it is inhibited by oxamate and proves to differ from the cytosolic activity (cL-LDH), as revealed by the difference found in both pH profiles and temperature dependence of m- and cL-LDH. Titration experiments with digitonin show that mL-LDH is restricted in mitochondrial inner compartment. In agreement with the above findings, three genes in Sus scrofa genome encoded for L-LDH subunits which are predicted to have mitochondrial localization, as investigated by Target P 1.1 and PredSL analysis.


In the early phase of programmed cell death in Tobacco Bright Yellow 2 cells the mitochondrial adenine nucleotide translocator, adenylate kinase and nucleoside diphosphate kinase are impaired in a reactive oxygen species-dependent manner.

  • Daniela Valenti‎ et al.
  • Biochimica et biophysica acta‎
  • 2007‎

To investigate whether and how mitochondria can change in plant programmed cell death (PCD), we used the non-photosynthetic Tobacco Bright Yellow 2 (TBY-2) cells. These can be synchronized to high levels, stand out in terms of growth rate and homogeneity and undergo PCD as a result of heat shock. Using these cells we investigated the activity of certain mitochondrial proteins that have a role in providing ATP and/or other nucleoside triphosphates (NTPs). We show that, already after 2 h from the heat shock, when cell viability remains unaffected, the rate of ADP/ATP exchange due to adenine nucleotide translocator (ANT) activity, and the rate of the reactions catalysed by adenylate kinase (ADK; EC 2.7.4.3) and nucleoside diphosphate kinase (NDPK; EC 2.7.4.6) are inhibited in a non-competitive-like manner. In all cases, externally added ascorbate partially prevented the inhibition. These effects occurred in spite of minor (for ANT) or no changes in the mitochondrial protein levels as immunologically investigated. Interestingly, a decrease of both the steady state level of the ascorbate pool and of the activity of l-galactono-gamma-lactone dehydrogenase (GLDH) (EC 1.3.2.3), the mitochondrial enzyme catalysing the last step of ascorbate biosynthesis, were also found.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: