2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Inotropic action of the puberty hormone kisspeptin in rat, mouse and human: cardiovascular distribution and characteristics of the kisspeptin receptor.

  • Janet J Maguire‎ et al.
  • PloS one‎
  • 2011‎

Kisspeptins, the ligands of the kisspeptin receptor known for its roles in reproduction and cancer, are also vasoconstrictor peptides in atherosclerosis-prone human aorta and coronary artery. The aim of this study was to further investigate the cardiovascular localisation and function of the kisspeptins and their receptor in human compared to rat and mouse heart. Immunohistochemistry and radioligand binding techniques were employed to investigate kisspeptin receptor localisation, density and pharmacological characteristics in cardiac tissues from all three species. Radioimmunoassay was used to detect kisspeptin peptide levels in human normal heart and to identify any pathological changes in myocardium from patients transplanted for cardiomyopathy or ischaemic heart disease. The cardiac function of kisspeptin receptor was studied in isolated human, rat and mouse paced atria, with a role for the receptor confirmed using mice with targeted disruption of Kiss1r. The data demonstrated that kisspeptin receptor-like immunoreactivity localised to endothelial and smooth muscle cells of intramyocardial blood vessels and to myocytes in human and rodent tissue. [(125)I]KP-14 bound saturably, with subnanomolar affinity to human and rodent myocardium (K(D) = 0.12 nM, human; K(D) = 0.44 nM, rat). Positive inotropic effects of kisspeptin were observed in rat, human and mouse. No response was observed in mice with targeted disruption of Kiss1r. In human heart a decrease in cardiac kisspeptin level was detected in ischaemic heart disease. Kisspeptin and its receptor are expressed in the human, rat and mouse heart and kisspeptins possess potent positive inotropic activity. The cardiovascular actions of the kisspeptins may contribute to the role of these peptides in pregnancy but the consequences of receptor activation must be considered if kisspeptin receptor agonists are developed for use in the treatment of reproductive disorders or cancer.


Model systems for studying kisspeptin signalling: mice and cells.

  • William H Colledge‎ et al.
  • Advances in experimental medicine and biology‎
  • 2013‎

Kisspeptins are a family of overlapping neuropeptides, encoded by the Kiss1 gene, that are required for activation and maintenance of the mammalian reproductive axis. Kisspeptins act within the hypothalamus to stimulate release of gonadotrophic releasing hormone and activation of the pituitary-gonadal axis. Robust model systems are required to dissect the regulatory mechanisms that control Kiss1 neuronal activity and to examine the molecular consequences of kisspeptin signalling. While studies in normal animals have been important in this, transgenic mice with targeted mutations affecting the kisspeptin signalling pathway have played a significant role in extending our understanding of kisspeptin physiology. Knock-out mice recapitulate the reproductive defects associated with mutations in humans and provide an experimentally tractable model system to interrogate regulatory feedback mechanisms. In addition, transgenic mice with cell-specific expression of modulator proteins such as the CRE recombinase or fluorescent reporter proteins such as GFP allow more sophisticated analyses such as cell or gene ablation or electrophysiological profiling. At a less complex level, immortalized cell lines have been useful for studying the role of kisspeptin in cell migration and metastasis and examining the intracellular signalling events associated with kisspeptin signalling.


Does Kisspeptin Signaling have a Role in the Testes?

  • Hua Mei‎ et al.
  • Frontiers in endocrinology‎
  • 2013‎

Kisspeptins are a family of overlapping neuropeptides encoded by the Kiss1 gene that regulate the mammalian reproductive axis by a central action in the hypothalamus to stimulate GnRH release. Kisspeptins and their receptor (GPR54 also called KISS1R) are also expressed in the testes but a functional role in this tissue has not been confirmed. We examined which cell types in the testes expressed kisspeptin and its receptor by staining for β-galactosidase activity using tissue from transgenic mice with LacZ targeted to either the Kiss1 or the Gpr54 genes. Expression of both genes appeared to be restricted to haploid spermatids and this was confirmed by a temporal expression analysis, which showed expression appearing with the first wave of haploid spermatid cells at puberty. We could not detect any kisspeptin protein in spermatids however, suggesting that the Kiss1 mRNA may be translationally repressed. We tested whether kisspeptin could act on Leydig cells by examining the effects of kisspeptin on the immortalized Leydig cell line MA-10. Although MA-10 cells were shown to express Gpr54 by RT-PCR, they did not respond to kisspeptin stimulation. We also tested whether kisspeptin could stimulate testosterone release by a direct action on the testes using explants of seminiferous tubules. The explants did not show any response to kisspeptin. The functional integrity of the MA-10 cells and the seminiferous tubule explants was confirmed by showing appropriate responses to the LH analog, human chorionic gonadotropin. These data suggest that kisspeptin signaling does not have a significant role in testes function in the mouse.


The testosterone-dependent and independent transcriptional networks in the hypothalamus of Gpr54 and Kiss1 knockout male mice are not fully equivalent.

  • Leah M Prentice‎ et al.
  • BMC genomics‎
  • 2011‎

Humans and mice with loss of function mutations in GPR54 (KISS1R) or kisspeptin do not progress through puberty, caused by a failure to release GnRH. The transcriptional networks regulated by these proteins in the hypothalamus have yet to be explored by genome-wide methods.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: