Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 945 papers

Proteolytic cleavage of Podocin by Matriptase exacerbates podocyte injury.

  • Shota Ozawa‎ et al.
  • The Journal of biological chemistry‎
  • 2020‎

Podocyte injury is a critical step toward the progression of renal disease and is often associated with a loss of slit diaphragm proteins, including Podocin. Although there is a possibility that the extracellular domain of these slit diaphragm proteins can be a target for a pathological proteolysis, the precise mechanism driving the phenomenon remains unknown. Here we show that Matriptase, a membrane-anchored protein, was activated at podocytes in CKD patients and mice, whereas Matriptase inhibitors slowed the progression of mouse kidney disease. The mechanism could be accounted for by an imbalance favoring Matriptase over its cognate inhibitor, hepatocyte growth factor activator inhibitor type 1 (HAI-1), because conditional depletion of HAI-1 in podocytes accelerated podocyte injury in mouse model. Matriptase was capable of cleaving Podocin, but such a reaction was blocked by either HAI-1 or dominant-negative Matriptase. Furthermore, the N terminus of Podocin, as a consequence of Matriptase cleavage of Podocin, translocated to nucleoli, suggesting that the N terminus of Podocin might be involved in the process of podocyte injury. Given these observations, we propose that the proteolytic cleavage of Podocin by Matriptase could potentially cause podocyte injury and that targeting Matriptase could be a novel therapeutic strategy for CKD patients.


The essential glucose transporter GLUT1 is epigenetically upregulated by C/EBPβ and WT1 during decidualization of the endometrium.

  • Isao Tamura‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

Human endometrial stromal cells (ESCs) differentiate into decidual cells by the action of progesterone, which is essential for implantation and maintenance of pregnancy. We previously reported that glucose uptake by human ESCs increases during decidualization and that glucose is indispensable for decidualization. Although glucose transporter 1 (GLUT1) is upregulated during decidualization, it remains unclear whether it is involved in glucose uptake. Here, we attempted to determine the role of GLUT1 during decidualization as well as the factors underlying its upregulation. ESCs were incubated with cAMP to induce decidualization. Knockdown of GLUT1 suppressed cAMP-increased glucose uptake and the expressions of specific markers of decidualization, IGF-binding protein-1 (IGFBP-1), and prolactin (PRL). To investigate the regulation of GLUT1 expression, we focused on CCAAT enhancer-binding protein β (C/EBPβ) and Wilms' tumor 1 (WT1) as the upstream transcription factors regulating GLUT1 expression. Knockdown of either C/EBPβ or WT1 suppressed cAMP-increased GLUT1 expression and glucose uptake. cAMP treatment also increased the recruitment of C/EBPβ and WT1 to the GLUT1 promoter region. Interestingly, cAMP increased the H3K27 acetylation (H3K27ac) and p300 recruitment in the GLUT1 promoter region. Knockdown of C/EBPβ or WT1 inhibited these events, indicating that both C/EBPβ and WT1 contribute to the increase of H3K27ac by recruiting p300 to the GLUT1 promoter region during decidualization. These findings indicate that GLUT1 is involved in glucose uptake in ESCs during decidualization, thus facilitating the establishment of pregnancy.


Transcriptional coactivator PGC-1α contributes to decidualization by forming a histone-modifying complex with C/EBPβ and p300.

  • Haruka Takagi‎ et al.
  • The Journal of biological chemistry‎
  • 2022‎

We previously reported that CCAAT/enhancer-binding protein beta (C/EBPβ) is the pioneer factor inducing transcription enhancer mark H3K27 acetylation (H3K27ac) in the promoter and enhancer regions of genes encoding insulin-like growth factor-binding protein-1 (IGFBP-1) and prolactin (PRL) and that this contributes to decidualization of human endometrial stromal cells (ESCs). Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α; PPARGC1A) is a transcriptional coactivator known to regulate H3K27ac. However, although PGC-1α is expressed in ESCs, the potential role of PGC-1α in mediating decidualization is unclear. Here, we investigated the involvement of PGC-1α in the regulation of decidualization. We incubated ESCs with cAMP to induce decidualization and knocked down PPARGC1A to inhibit cAMP-induced expression of IGFBP-1 and PRL. We found cAMP increased the recruitment of PGC-1α and p300 to C/EBPβ-binding sites in the promoter and enhancer regions of IGFBP-1 and PRL, corresponding with increases in H3K27ac. Moreover, PGC-1α knockdown inhibited these increases, suggesting PGC-1α forms a histone-modifying complex with C/EBPβ and p300 at these regions. To further investigate the regulation of PGC-1α, we focused on C/EBPβ upstream of PGC-1α. We found cAMP increased C/EBPβ recruitment to the novel enhancer regions of PPARGC1A. Deletion of these enhancers decreased PGC-1α expression, indicating that C/EBPβ upregulates PGC-1α expression by binding to novel enhancer regions. In conclusion, PGC-1α is upregulated by C/EBPβ recruitment to novel enhancers and contributes to decidualization by forming a histone-modifying complex with C/EBPβ and p300, thereby inducing epigenomic changes in the promoters and enhancers of IGFBP-1 and PRL.


Sp1 is a substrate of Keap1 and regulates the activity of CRL4AWDR23 ubiquitin ligase toward Nrf2.

  • Ferbian Milas Siswanto‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a critical transcription factor that orchestrates cellular responses to oxidative stress. Because the dysregulation of Nrf2 has been implicated in many diseases, precise regulation of its protein level is crucial for maintaining homeostasis. Kelch-like-ECH-associated protein 1 (Keap1) and WD40 repeat protein 23 (WDR23) directly regulate Nrf2 levels via similar but distinct proteasome-dependent pathways. WDR23 forms a part of the WDR23-Cullin 4A-RING ubiquitin ligase complex (CRL4AWDR23), whereas Keap1 serves as a substrate adaptor for the Cullin 3-containing ubiquitin ligase complex. However, the mechanisms underlying crosstalk between these Keap1 and WDR23 pathways for the regulation of Nrf2 levels have not been investigated. Here, we showed that knockdown (KD) of Keap1 upregulated the expression of Cullin4A (CUL4A) in a specificity protein 1 (Sp1)-dependent manner. We also revealed that Sp1 interacted with Keap1, leading to ubiquitination of Sp1. Increases in Sp1 by Keap1 KD triggered Sp1 binding to the fourth Sp1 binding site (Sp1_M4) within the -230/+50 region of the CUL4A gene. We also demonstrated that the overexpression and KD of Sp1 reduced and increased Nrf2 protein levels, respectively. These effects were abrogated by the WDR23 KD, suggesting that Sp1 also regulates Nrf2 levels via the ubiquitin ligase complex CRL4AWDR23. In conclusion, we discovered Sp1 as a novel substrate of Keap1 and provided evidence that Sp1 regulates the expression of CUL4A. We revealed a novel role for Sp1 in mediating crosstalk between two independent regulators of Nrf2 protein levels.


A germ cell-specific gene, Prmt5, works in somatic cell reprogramming.

  • Go Nagamatsu‎ et al.
  • The Journal of biological chemistry‎
  • 2011‎

Germ cells possess the unique ability to acquire totipotency during development in vivo as well as give rise to pluripotent stem cells under the appropriate conditions in vitro. Recent studies in which somatic cells were experimentally converted into pluripotent stem cells revealed that genes expressed in primordial germ cells (PGCs), such as Oct3/4, Sox2, and Lin28, are involved in this reprogramming. These findings suggest that PGCs may be useful for identifying factors that successfully and efficiently reprogram somatic cells into toti- and/or pluripotent stem cells. Here, we show that Blimp-1, Prdm14, and Prmt5, each of which is crucial for PGC development, have the potential to reprogram somatic cells into pluripotent stem cells. Among them, Prmt5 exhibited remarkable reprogramming of mouse embryonic fibroblasts into which Prmt5, Klf4, and Oct3/4 were introduced. The resulting cells exhibited pluripotent gene expression, teratoma formation, and germline transmission in chimeric mice, all of which were indistinguishable from those induced with embryonic stem cells. These data indicate that some of the factors that play essential roles in germ cell development are also active in somatic cell reprogramming.


High temperature promotes amyloid β-protein production and γ-secretase complex formation via Hsp90.

  • Arshad Ali Noorani‎ et al.
  • The Journal of biological chemistry‎
  • 2020‎

Alzheimer's disease (AD) is characterized by neuronal loss and accumulation of β-amyloid-protein (Aβ) in the brain parenchyma. Sleep impairment is associated with AD and affects about 25-40% of patients in the mild-to-moderate stages of the disease. Sleep deprivation leads to increased Aβ production; however, its mechanism remains largely unknown. We hypothesized that the increase in core body temperature induced by sleep deprivation may promote Aβ production. Here, we report temperature-dependent regulation of Aβ production. We found that an increase in temperature, from 37 °C to 39 °C, significantly increased Aβ production in amyloid precursor protein-overexpressing cells. We also found that high temperature (39 °C) significantly increased the expression levels of heat shock protein 90 (Hsp90) and the C-terminal fragment of presenilin 1 (PS1-CTF) and promoted γ-secretase complex formation. Interestingly, Hsp90 was associated with the components of the premature γ-secretase complex, anterior pharynx-defective-1 (APH-1), and nicastrin (NCT) but was not associated with PS1-CTF or presenilin enhancer-2. Hsp90 knockdown abolished the increased level of Aβ production and the increased formation of the γ-secretase complex at high temperature in culture. Furthermore, with in vivo experiments, we observed increases in the levels of Hsp90, PS1-CTF, NCT, and the γ-secretase complex in the cortex of mice housed at higher room temperature (30 °C) compared with those housed at standard room temperature (23 °C). Our results suggest that high temperature regulates Aβ production by modulating γ-secretase complex formation through the binding of Hsp90 to NCT/APH-1.


Rapid production of platelet-activating factor is induced by protein kinase Cα-mediated phosphorylation of lysophosphatidylcholine acyltransferase 2 protein.

  • Ryo Morimoto‎ et al.
  • The Journal of biological chemistry‎
  • 2014‎

Platelet-activating factor (PAF), a potent proinflammatory lipid mediator, is synthesized rapidly in response to extracellular stimuli by the activation of acetyl-CoA:lyso-PAF acetyltransferase (lyso-PAFAT). We have reported previously that lyso-PAFAT activity is enhanced in three distinct ways in mouse macrophages: rapid activation (30 s) after PAF stimulation and minutes to hours after LPS stimulation. Lysophosphatidylcholine acyltransferase 2 (LPCAT2) was later identified as a Ca(2+)-dependent lyso-PAFAT. However, the mechanism of rapid lyso-PAFAT activation within 30 s has not been elucidated. Here we show a new signaling pathway for rapid biosynthesis of PAF that is mediated by phosphorylation of LPCAT2 at Ser-34. Stimulation by either PAF or ATP resulted in PKCα-mediated phosphorylation of LPCAT2 to enhance lyso-PAFAT activity and rapid PAF production. Biochemical analyses showed that the phosphorylation of Ser-34 resulted in augmentation of Vmax with minimal Km change. Our results offer an answer for the previously unknown mechanism of rapid PAF production.


The Keap1/Nrf2 protein axis plays a role in osteoclast differentiation by regulating intracellular reactive oxygen species signaling.

  • Hiroyuki Kanzaki‎ et al.
  • The Journal of biological chemistry‎
  • 2013‎

Reactive oxygen species (ROS) act as intracellular signaling molecules in the regulation of receptor activator of nuclear factor-κB ligand (RANKL)-dependent osteoclast differentiation, but they also have cytotoxic effects that include peroxidation of lipids and oxidative damage to proteins and DNA. Cellular protective mechanisms against oxidative stress include transcriptional control of cytoprotective enzymes by the transcription factor, nuclear factor E2-related factor 2 (Nrf2). This study investigated the relationship between Nrf2 and osteoclastogenesis. Stimulation of osteoclast precursors (mouse primary peritoneal macrophages and RAW 264.7 cells) with RANKL resulted in the up-regulation of kelch-like ECH-associated protein 1 (Keap1), a negative regulator of Nrf2. It also decreased the Nrf2/Keap1 ratio, and it down-regulated cytoprotective enzymes (heme oxygenase-1, γ-glutamylcysteine synthetase, and glucose-6-phosphate dehydrogenase). Nrf2 overexpression up-regulated the expression of cytoprotective enzymes, decreased ROS levels, decreased the number of tartrate-resistant acid phosphatase-positive multinucleated cells, reduced marker genes for osteoclast differentiation, and attenuated bone destruction in both in vitro and in vivo models. Overexpression of Keap1 or RNAi knockdown of Nrf2 exerted the opposite actions. In addition, in vivo local Nrf2 overexpression attenuated lipopolysaccharide-mediated RANKL-dependent cranial bone destruction in vivo. This is the first study to show that the Keap1/Nrf2 axis regulates RANKL-dependent osteoclastogenesis through modulation of intracellular ROS signaling via expression of cytoprotective enzymes. This raises the exciting possibility that the Keap1-Nrf2 axis may be a therapeutic target for the treatment of bone destructive disease.


Human trans-editing enzyme displays tRNA acceptor-stem specificity and relaxed amino acid selectivity.

  • Oscar Vargas-Rodriguez‎ et al.
  • The Journal of biological chemistry‎
  • 2020‎

Accurate translation of genetic information into proteins is vital for cell sustainability. ProXp-ala prevents proteome-wide Pro-to-Ala mutations by hydrolyzing misacylated Ala-tRNAPro, which is synthesized by prolyl-tRNA synthetase. Bacterial ProXp-ala was previously shown to combine a size-based exclusion mechanism with conformational and chemical selection for the recognition of the alanyl moiety, whereas tRNAPro is selected via recognition of tRNA acceptor-stem elements G72 and A73. The identity of these critical bases changed during evolution with eukaryotic cytosolic tRNAPro possessing a cytosine at the corresponding positions. The mechanism by which eukaryotic ProXp-ala adapted to these changes remains unknown. In this work, recognition of the aminoacyl moiety and tRNA acceptor stem by human (Homo sapiens, or Hs) ProXp-ala was examined. Enzymatic assays revealed that Hs ProXp-ala requires C72 and C73 in the context of Hs cytosolic tRNAPro for efficient deacylation of mischarged Ala-tRNAPro The strong dependence on these bases prevents cross-species deacylation of bacterial Ala-tRNAPro or of Hs mitochondrial Ala-tRNAPro by the human enzyme. Similar to the bacterial enzyme, Hs ProXp-ala showed strong tRNA acceptor-stem recognition but differed in its amino acid specificity profile relative to bacterial ProXp-ala. Changes at conserved residues in both the Hs and bacterial ProXp-ala substrate-binding pockets modulated this specificity. These results illustrate how the mechanism of substrate selection diverged during the evolution of the ProXp-ala family, providing the first example of a trans-editing domain whose specificity evolved to adapt to changes in its tRNA substrate.


Docosahexaenoic acid preserves visual function by maintaining correct disc morphology in retinal photoreceptor cells.

  • Hideo Shindou‎ et al.
  • The Journal of biological chemistry‎
  • 2017‎

Docosahexaenoic acid (DHA) has essential roles in photoreceptor cells in the retina and is therefore crucial to healthy vision. Although the influence of dietary DHA on visual acuity is well known and the retina has an abundance of DHA-containing phospholipids (PL-DHA), the mechanisms associated with DHA's effects on visual function are unknown. We previously identified lysophosphatidic acid acyltransferase 3 (LPAAT3) as a PL-DHA biosynthetic enzyme. Here, using comprehensive phospholipid analyses and imaging mass spectroscopy, we found that LPAAT3 is expressed in the inner segment of photoreceptor cells and that PL-DHA disappears from the outer segment in the LPAAT3-knock-out mice. Dynamic light-scattering analysis of liposomes and molecular dynamics simulations revealed that the physical characteristics of DHA reduced membrane-bending rigidity. Following loss of PL-DHA, LPAAT3-knock-out mice exhibited abnormalities in the retinal layers, such as incomplete elongation of the outer segment and decreased thickness of the outer nuclear layers and impaired visual function, as well as disordered disc morphology in photoreceptor cells. Our results indicate that PL-DHA contributes to visual function by maintaining the disc shape in photoreceptor cells and that this is a function of DHA in the retina. This study thus provides the reason why DHA is required for visual acuity and may help inform approaches for overcoming retinal disorders associated with DHA deficiency or dysfunction.


Inositol pyrophosphate profiling reveals regulatory roles of IP6K2-dependent enhanced IP7 metabolism in the enteric nervous system.

  • Masatoshi Ito‎ et al.
  • The Journal of biological chemistry‎
  • 2023‎

Inositol pyrophosphates regulate diverse physiological processes; to better understand their functional roles, assessing their tissue-specific distribution is important. Here, we profiled inositol pyrophosphate levels in mammalian organs using an originally designed liquid chromatography-mass spectrometry (LC-MS) protocol and discovered that the gastrointestinal tract (GIT) contained the highest levels of diphosphoinositol pentakisphosphate (IP7) and its precursor inositol hexakisphosphate (IP6). Although their absolute levels in the GIT are diet dependent, elevated IP7 metabolism still exists under dietary regimens devoid of exogenous IP7. Of the major GIT cells, enteric neurons selectively express the IP7-synthesizing enzyme IP6K2. We found that IP6K2-knockout mice exhibited significantly impaired IP7 metabolism in the various organs including the proximal GIT. In addition, our LC-MS analysis displayed that genetic ablation of IP6K2 significantly impaired IP7 metabolism in the gut and duodenal muscularis externa containing myenteric plexus. Whole transcriptome analysis of duodenal muscularis externa further suggested that IP6K2 inhibition significantly altered expression levels of the gene sets associated with mature neurons, neural progenitor/stem cells, and glial cells, as well as of certain genes modulating neuronal differentiation and functioning, implying critical roles of the IP6K2-IP7 axis in developmental and functional regulation of the enteric nervous system. These results collectively reveal an unexpected role of mammalian IP7-a highly active IP6K2-IP7 pathway is conducive to the enteric nervous system.


Host cell membrane proteins located near SARS-CoV-2 spike protein attachment sites are identified using proximity labeling and proteomic analysis.

  • Norihiro Kotani‎ et al.
  • The Journal of biological chemistry‎
  • 2022‎

Coronavirus disease represents a real threat to the global population, and understanding the biological features of the causative virus, that is, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is imperative for mitigating this threat. Analyses of proteins such as primary receptors and coreceptors (cofactors), which are involved in the entry of SARS-CoV-2 into host cells, will provide important clues to help control the virus. Here, we identified host cell membrane protein candidates present in proximity to the attachment sites of SARS-CoV-2 spike proteins, using proximity labeling and proteomic analysis. The identified proteins represent key candidate factors that may be required for viral entry. We found SARS-CoV-2 host protein DPP4, cell adhesion protein Cadherin 17, and glycoprotein CD133 colocalized with cell membrane-bound SARS-CoV-2 spike proteins in Caco-2 cells and thus showed potential as candidate factors. Additionally, our analysis of the experimental infection of HEK293T cells with a SARS-CoV-2 pseudovirus indicated a 2-fold enhanced infectivity in the CD133-ACE2-coexpressing HEK293T cells compared to that in HEK293T cells expressing ACE-2 alone. The information and resources regarding these coreceptor labeling and analysis techniques could be utilized for the development of antiviral agents against SARS-CoV-2 and other emerging viruses.


Transcriptional coregulator Ess2 controls survival of post-thymic CD4+ T cells through the Myc and IL-7 signaling pathways.

  • Ichiro Takada‎ et al.
  • The Journal of biological chemistry‎
  • 2022‎

Ess2, also known as Dgcr14, is a transcriptional co-regulator of CD4+ T cells. Ess2 is located in a chromosomal region, the loss of which has been associated with 22q11.2 deletion syndrome (22q11DS), which causes heart defects, skeletal abnormalities, and immunodeficiency. However, the specific association of Ess2 with 22q11DS remains unclear. To elucidate the role of Ess2 in T-cell development, we generated Ess2 floxed (Ess2fl/fl) and CD4+ T cell-specific Ess2 KO (Ess2ΔCD4/ΔCD4) mice using the Cre/loxP system. Interestingly, Ess2ΔCD4/ΔCD4 mice exhibited reduced naïve T-cell numbers in the spleen, while the number of thymocytes (CD4-CD8-, CD4+CD8+, CD4+CD8-, and CD4-CD8+) in the thymus remained unchanged. Furthermore, Ess2ΔCD4/ΔCD4 mice had decreased NKT cells and increased γδT cells in the thymus and spleen. A genome-wide expression analysis using RNA-seq revealed that Ess2 deletion alters the expression of many genes in CD4 single-positive thymocytes, including genes related to the immune system and Myc target genes. In addition, Ess2 enhanced the transcriptional activity of c-Myc. Some genes identified as Ess2 targets in mice show expressional correlation with ESS2 in human immune cells. Moreover, Ess2ΔCD4/ΔCD4 naïve CD4+ T cells did not maintain survival in response to IL-7. Our results suggest that Ess2 plays a critical role in post-thymic T-cell survival through the Myc and IL-7 signaling pathways.


A novel agonist with homobivalent single-domain antibodies that bind the FGF receptor 1 domain III functions as an FGF2 ligand.

  • Ryo Yonehara‎ et al.
  • The Journal of biological chemistry‎
  • 2023‎

Fibroblast growth factor (FGF) is a multifunctional protein that exhibits a wide range of biological effects. Most commonly, it acts as a mitogen, but it also has regulatory, morphological, and endocrine effects. The four receptor subtypes of FGF are activated by more than 20 different FGF ligands. FGF2, one of the FGF ligands, is an essential factor for cell culture in stem cells for regenerative medicine; however, recombinant FGF2 is extremely unstable. Here, we successfully generated homobivalent agonistic single-domain antibodies (variable domain of heavy chain of heavy chain antibodies referred to as VHHs) that bind to domain III and induce activation of the FGF receptor 1 and thus transduce intracellular signaling. This agonistic VHH has similar biological activity (EC50) as the natural FGF2 ligand. Furthermore, we determined that the agonistic VHH could support the proliferation of human-induced pluripotent stem cells (PSCs) and human mesenchymal stem cells, which are PSCs for regenerative medicine. In addition, the agonistic VHH could maintain the ability of mesenchymal stem cells to differentiate into adipocytes or osteocytes, indicating that it could maintain the properties of PSCs. These results suggest that the VHH agonist may function as an FGF2 mimetic in cell preparation of stem cells for regenerative medicine with better cost effectiveness.


Palmitate induces insulin resistance in H4IIEC3 hepatocytes through reactive oxygen species produced by mitochondria.

  • Seiji Nakamura‎ et al.
  • The Journal of biological chemistry‎
  • 2009‎

Visceral adiposity in obesity causes excessive free fatty acid (FFA) flux into the liver via the portal vein and may cause fatty liver disease and hepatic insulin resistance. However, because animal models of insulin resistance induced by lipid infusion or a high fat diet are complex and may be accompanied by alterations not restricted to the liver, it is difficult to determine the contribution of FFAs to hepatic insulin resistance. Therefore, we treated H4IIEC3 cells, a rat hepatocyte cell line, with a monounsaturated fatty acid (oleate) and a saturated fatty acid (palmitate) to investigate the direct and initial effects of FFAs on hepatocytes. We show that palmitate, but not oleate, inhibited insulin-stimulated tyrosine phosphorylation of insulin receptor substrate 2 and serine phosphorylation of Akt, through c-Jun NH(2)-terminal kinase (JNK) activation. Among the well established stimuli for JNK activation, reactive oxygen species (ROS) played a causal role in palmitate-induced JNK activation. In addition, etomoxir, an inhibitor of carnitine palmitoyltransferase-1, which is the rate-limiting enzyme in mitochondrial fatty acid beta-oxidation, as well as inhibitors of the mitochondrial respiratory chain complex (thenoyltrifluoroacetone and carbonyl cyanide m-chlorophenylhydrazone) decreased palmitate-induced ROS production. Together, our findings in hepatocytes indicate that palmitate inhibited insulin signal transduction through JNK activation and that accelerated beta-oxidation of palmitate caused excess electron flux in the mitochondrial respiratory chain, resulting in increased ROS generation. Thus, mitochondria-derived ROS induced by palmitate may be major contributors to JNK activation and cellular insulin resistance.


Multistep conformational changes leading to the gate opening of light-driven sodium pump rhodopsin.

  • Yukino Sato‎ et al.
  • The Journal of biological chemistry‎
  • 2023‎

Membrane transport proteins require a gating mechanism that opens and closes the substrate transport pathway to carry out unidirectional transport. The "gating" involves large conformational changes and is achieved via multistep reactions. However, these elementary steps have not been clarified for most transporters due to the difficulty of detecting the individual steps. Here, we propose these steps for the gate opening of the bacterial Na+ pump rhodopsin, which outwardly pumps Na+ upon illumination. We herein solved an asymmetric dimer structure of Na+ pump rhodopsin from the bacterium Indibacter alkaliphilus. In one protomer, the Arg108 sidechain is oriented toward the protein center and appears to block a Na+ release pathway to the extracellular (EC) medium. In the other protomer, however, this sidechain swings to the EC side and then opens the release pathway. Assuming that the latter protomer mimics the Na+-releasing intermediate, we examined the mechanism for the swing motion of the Arg108 sidechain. On the EC surface of the first protomer, there is a characteristic cluster consisting of Glu10, Glu159, and Arg242 residues connecting three helices. In contrast, this cluster is disrupted in the second protomer. Our experimental results suggested that this disruption is a key process. The cluster disruption induces the outward movement of the Glu159-Arg242 pair and simultaneously rotates the seventh transmembrane helix. This rotation resultantly opens a space for the swing motion of the Arg108 sidechain. Thus, cluster disruption might occur during the photoreaction and then trigger sequential conformation changes leading to the gate-open state.


Identification of difructose dianhydride I synthase/hydrolase from an oral bacterium establishes a novel glycoside hydrolase family.

  • Toma Kashima‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

Fructooligosaccharides and their anhydrides are widely used as health-promoting foods and prebiotics. Various enzymes acting on β-D-fructofuranosyl linkages of natural fructan polymers have been used to produce functional compounds. However, enzymes that hydrolyze and form α-D-fructofuranosyl linkages have been less studied. Here, we identified the BBDE_2040 gene product from Bifidobacterium dentium (α-D-fructofuranosidase and difructose dianhydride I synthase/hydrolase from Bifidobacterium dentium [αFFase1]) as an enzyme with α-D-fructofuranosidase and α-D-arabinofuranosidase activities and an anomer-retaining manner. αFFase1 is not homologous with any known enzymes, suggesting that it is a member of a novel glycoside hydrolase family. When caramelized fructose sugar was incubated with αFFase1, conversions of β-D-Frup-(2→1)-α-D-Fruf to α-D-Fruf-1,2':2,1'-β-D-Frup (diheterolevulosan II) and β-D-Fruf-(2→1)-α-D-Fruf (inulobiose) to α-D-Fruf-1,2':2,1'-β-D-Fruf (difructose dianhydride I [DFA I]) were observed. The reaction equilibrium between inulobiose and DFA I was biased toward the latter (1:9) to promote the intramolecular dehydrating condensation reaction. Thus, we named this enzyme DFA I synthase/hydrolase. The crystal structures of αFFase1 in complex with β-D-Fruf and β-D-Araf were determined at the resolutions of up to 1.76 Å. Modeling of a DFA I molecule in the active site and mutational analysis also identified critical residues for catalysis and substrate binding. The hexameric structure of αFFase1 revealed the connection of the catalytic pocket to a large internal cavity via a channel. Molecular dynamics analysis implied stable binding of DFA I and inulobiose to the active site with surrounding water molecules. Taken together, these results establish DFA I synthase/hydrolase as a member of a new glycoside hydrolase family (GH172).


LY6D-induced macropinocytosis as a survival mechanism of senescent cells.

  • Taiki Nagano‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

Although senescent cells display various morphological changes including vacuole formation, it is still unclear how these processes are regulated. We have recently identified the gene, lymphocyte antigen 6 complex, locus D (LY6D), to be upregulated specifically in senescent cells. LY6D is a glycosylphosphatidylinositol-anchored cell-surface protein whose function remains unknown. Here, we analyzed the functional relationship between LY6D and the senescence processes. We found that overexpression of LY6D induced vacuole formation and knockdown of LY6D suppressed the senescence-associated vacuole formation. The LY6D-induced vacuoles were derived from macropinocytosis, a distinct form of endocytosis. Furthermore, Src family kinases and Ras were found to be recruited to membrane lipid rafts in an LY6D-dependent manner, and inhibition of their activity impaired the LY6D-induced macropinocytosis. Finally, reduction of senescent-cell survival induced by glutamine deprivation was recovered by albumin supplementation to the culture media in an LY6D-dependent manner. Because macropinocytosis acts as an amino acid supply route, these results suggest that LY6D-mediated macropinocytosis contributes to senescent-cell survival through the incorporation of extracellular nutrients.


A BRET-based assay reveals collagen-Hsp47 interaction dynamics in the endoplasmic reticulum and small-molecule inhibition of this interaction.

  • Shinya Ito‎ et al.
  • The Journal of biological chemistry‎
  • 2019‎

Molecular chaperones perform pivotal roles in proteostasis by engaging in protein-protein interactions (PPIs). The collagen-specific molecular chaperone Hsp47 (heat shock protein 47) interacts with procollagen in the endoplasmic reticulum (ER) and plays crucial roles in collagen synthesis. PPIs between Hsp47 and collagen could offer a therapeutic target for fibrosis, which is characterized by abnormal collagen accumulation in the extracellular matrix of fibrotic organs. Herein, we established a bioluminescence resonance energy transfer (BRET) system for assessing Hsp47-collagen interaction dynamics within the ER. After optimization and validation of the method, we could demonstrate inhibition of the interaction between Hsp47 and collagen by a small molecule (Col003) in the ER. Using the BRET system, we also found that Hsp47 interacts not only with the Gly-Pro-Arg motif but also weakly with Gly-Pro-Hyp motifs of triple-helical collagen in cells. Moreover, we found that the serpin loop of Hsp47 (SerpinH1) contributes to its binding to collagen. We propose that the method developed here can provide valuable information on PPIs between Hsp47 and collagen and on the effects of PPI inhibitors important for the management of fibrotic disorders.


Elucidation of binding preferences of YEATS domains to site-specific acetylated nucleosome core particles.

  • Masaki Kikuchi‎ et al.
  • The Journal of biological chemistry‎
  • 2022‎

Acetylated lysine residues (Kac) in histones are recognized by epigenetic reader proteins, such as Yaf9, ENL, AF9, Taf14, and Sas5 (YEATS) domain-containing proteins. Human YEATS domains bind to the acetylated N-terminal tail of histone H3; however, their Kac-binding preferences at the level of the nucleosome are unknown. Through genetic code reprogramming, here, we established a nucleosome core particle (NCP) array containing histones that were acetylated at specific residues and used it to compare the Kac-binding preferences of human YEATS domains. We found that AF9-YEATS showed basal binding to the unmodified NCP and that it bound stronger to the NCP containing a single acetylation at one of K4, K9, K14, or K27 of H3, or to histone H4 multi-acetylated between K5 and K16. Crystal structures of AF9-YEATS in complex with an H4 peptide diacetylated either at K5/K8 or K8/K12 revealed that the aromatic cage of the YEATS domain recognized the acetylated K8 residue. Interestingly, E57 and D103 of AF9, both located outside of the aromatic cage, were shown to interact with acetylated K5 and K12 of H4, respectively, consistent with the increase in AF9-YEATS binding to the H4K8-acetylated NCP upon additional acetylation at K5 or K12. Finally, we show that a mutation of E57 to alanine in AF9-YEATS reduced the binding affinity for H4 multiacetylated NCPs containing H4K5ac. Our data suggest that the Kac-binding affinity of AF9-YEATS increases additively with the number of Kac in the histone tail.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: