Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,345 papers

Salmonella mediated the hemagglutinating virus of Japan-envelope transfer suppresses tumor growth.

  • Che-Hsin Lee‎ et al.
  • Oncotarget‎
  • 2017‎

Salmonella can target to tumor microenvironments after systemic treatment. The hemagglutinating virus of Japan-envelope (HVJ-E) induced apoptosis in tumor cells without toxicity in normal cells. Current HVJ-E therapeutic strategies, aimed at using HVJ-E for intratumor treatment, have shown great promise in animal models but have achieved only limited systemic treatment. The purpose of this study was to investigate the modulation of the anti-tumor efficiency of HVJ-E by coating the particles with poly (allylamine hydrochloride) (PAH), designated as P-HVJ-E. Treatment with P-HVJ-E resulted in decreased hemagglutinating activity and maintained tumor cell-selective apoptosis and anti-tumor immunity. The use of Salmonella as a coating for P-HVJ-E (PHS) enhanced the antitumor activity and maintained the tumor-targeting activity. Treatment with PHS resulted in delayed tumor growth in tumor-bearing mice. Furthermore, a Western blot assay of the tumors revealed that HVJ-E targeted to the tumor after systemic treatment with PHS. These results indicate that Salmonella coating viral particles may provide a new approach for tumor therapy.


Impact of hematological inflammatory markers on clinical outcome in patients with salivary duct carcinoma: a multi-institutional study in Japan.

  • Daisuke Kawakita‎ et al.
  • Oncotarget‎
  • 2017‎

The prognostic role of modified Glasgow Prognostic Score (mGPS), neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) in patients with salivary duct carcinoma (SDC) remains unclear. We conducted a multi-institutional retrospective cohort study of 140 SDC patients. The survival impact of these hematological markers was evaluated using multivariate proportional hazard models.High mGPS (≥1) was significantly associated with worse survival (3-year overall survival (OS): 16.7% vs 66.1%, p-value=0.003; 3-year progression-free survival (PFS): 0.0% vs 27.9%, p-value<0.001). Additionally, high C-reactive protein (CRP) (≥0.39 mg/dl) was significantly associated with worse survival (3-year OS: 32.1% vs 68.2%, p-value=0.001; 3-year PFS: 7.1% vs 31.1%, p-value<0.001). These associations were consistent with multivariate analysis adjusted for established prognostic factors. Although we also found significant association of high NLR (≥2.5) with OS (HR 1.80; 95% confidence interval, 1.05-3.08) in multivariate analysis, this association were inconsistent with the results of PFS. In addition, we found no significant associations of PLR with survival. In conclusion, we found that mGPS, CRP and NLR were identified as prognostic factors associated with survival in SDC patients.


Carbon-ion radiotherapy for cholangiocarcinoma: a multi-institutional study by and the Japan carbon-ion radiation oncology study group (J-CROS).

  • Goro Kasuya‎ et al.
  • Oncotarget‎
  • 2019‎

To evaluate the safety and efficacy of carbon-ion radiotherapy (CIRT) for cholangiocarcinoma via a multicenter retrospective study. Clinical data were collected from patients with cholangiocarcinoma who had received CIRT at one of four treating institutions in Japan. Of 56 eligible patients, none received surgery for cholangiocarcinoma before or after CIRT. The primary endpoint was overall survival (OS). Based on the tumor site, the 56 cases were categorized as intrahepatic cholangiocarcinoma (IHC) (n=27) or perihilar cholangiocarcinoma (PHC) (n=29). In all patients, the median tumor size was 37 (range, 15‒110) mm, and the most commonly prescribed dose was 76 Gy (relative biological effectiveness) in 20 fractions. The median survival was 14.8 (range, 2.1-129.2) months, and the 1- and 2-year OS rates were 69.7% and 40.9%, respectively. The median survival times of the patients with IHC and those with PHC were 23.8 and 12.6 months, respectively. Both univariate and multivariate analyses revealed that cholangitis pre-CIRT and Child‒Pugh class B were significant prognostic factors for an unfavorable OS. Of four patients who died of liver failure, one with IHC was suspected to have radiation-induced liver disease because of newly developed ascites, and died at 4.3 months post-CIRT. Grade 3 CIRT-related bile duct stenosis was observed in one IHC case. No other CIRT-related severe adverse events, including gastrointestinal events, were observed. These results suggest that CIRT yields relatively favorable treatment outcomes, especially for patients with IHC, and acceptable toxicities were observed in patients with cholangiocarcinoma who did not receive surgery.


CDX2 expression is concordant between primary colorectal cancer lesions and corresponding liver metastases independent of chemotherapy: a single-center retrospective study in Japan.

  • Yasuyuki Shigematsu‎ et al.
  • Oncotarget‎
  • 2018‎

Loss of caudal-type homeobox transcription factor 2 (CDX2) expression in colorectal cancers (CRCs) has recently been proposed as a promising predictive biomarker for not only prognosis but also response to chemotherapy. However, the relationship between alterations in CDX2 expression during cancer progression and response to chemotherapy remains unclear. We herein aimed to determine the concordance of CDX2 expression between primary CRCs and corresponding liver metastases, in association with chemotherapy.


MicroRNA-216a inhibits the metastasis of gastric cancer cells by targeting JAK2/STAT3-mediated EMT process.

  • Youmao Tao‎ et al.
  • Oncotarget‎
  • 2017‎

MicroRNAs (miRNAs), a group of small, non-protein coding, endogenous RNAs, play critical roles in the tumorigenesis and progression of human cancer. miR-216a has recently been reported to play an oncogenic role in human cancer. While, the expression of miR-216a, its biological function and underlying molecular mechanisms in gastric cancer (GC) are largely unknown. In this study, we revealed that miR-216a was underexpressed in GC tissues compared to matched noncancerous tissues. Decreased levels of miR-216a were confirmed in GC cell lines compared with a normal gastric epithelium cell line. miR-216a underexpression was associated with malignant prognostic features including lymph node metastasis, venous infiltration, invasive depth and advanced TNM stage. GC patients with low miR-216a level showed an obvious shorter overall survival. miR-216a overexpression restrained migration and invasion of MGC-803 cells, while its knockdown exerted opposite effects on metastatic behaviors of SGC-7901 cells. In vivo experiments found that miR-216a restoration reduced metastatic nodes of GC cells in nude mice liver. miR-216a notably suppressed epithelial-mesenchymal transition (EMT) of GC cells. Janus kinase 2 (JAK2) was recognized as a direct target and downstream mediator of miR-216a in GC cells. Interestingly, JAK2/signal transducer and activator of transcription 3 (STAT3) pathway was prominently inactivated by miR-216a and probably mediated the role of miR-216a in the regulation of migration, invasion and EMT process of GC cells. In conclusion, these data suggest that miR-216a functions as a tumor suppressive miRNA in the development of GC possibly by targeting JAK2/STAT3-mediated EMT.


Overexpression of microRNA-132 enhances the radiosensitivity of cervical cancer cells by down-regulating Bmi-1.

  • Gui-Feng Liu‎ et al.
  • Oncotarget‎
  • 2017‎

We examined the effects of microRNA-132 (miR-132) on Bmi-1 expression and radiosensitivity in HeLa, SiHa, and C33A cervical cancer (CC) cells and 104 CC patients. MiR-132 expression was decreased and Bmi-1 expression was increased in tumor tissues compared to adjacent normal tissues and in radiotherapy-resistant patients compared to radiotherapy-sensitive patients. MiR-132 expression and Bmi-1 mRNA expression were also negatively correlated in tumor tissues. HeLa, SiHa, and C33A cells were divided into blank, miR-132 negative control (NC), miR-132 inhibitor, miR-132 mimics, siBmi-1, and miR-132 inhibitor + siBmi-1 groups, after which expression of miR-132 and Bmi-1, and the interaction between them and cell survival, proliferation, and apoptosis were examined. Bmi-1 was confirmed as a target of miRNA-132. Survival was higher and apoptosis lower in the miR-132 inhibitor group than the blank group after various doses of radiation. By contrast, survival was lower and apoptosis higher in the miRNA-132 mimics and siBmi-1 groups than in the blank group. Moreover, miR-132 expression increased and Bmi-1 mRNA expression decreased in each group at radiation doses of 6 and 8 Gy. Finally, co-administration of radiotherapy and exogenous miR-132 inhibited the growth of HeLa cell transplant-induced tumors in nude mice more effectively than radiotherapy alone. These results suggest overexpression of miR-132 enhances the radiosensitivity of CC cells by down-regulating Bmi-1 and that miR-132 may be a useful new target for the treatment of CC.


Anti-EGFR antibody sensitizes colorectal cancer stem-like cells to Fluorouracil-induced apoptosis by affecting autophagy.

  • Ye Feng‎ et al.
  • Oncotarget‎
  • 2016‎

Recent reports suggest that colorectal carcinoma (CRC) may be sustained by a small subpopulation of cells, termed cancer stem cells (CSCs), which have drug resistance properties as a key reason for chemotherapy failure. The epidermal growth factor receptor (EGFR) controls CRC initiation and progression. Monoclonal antibody against EGFR (cetuximab) has been used in treatment of several cancers. However, the effects of cetuximab on CSCs in the CRC chemotherapy remain unclear. Here, we studied the effects of cetuximab on the CSC-like cells in Fluorouracil (5-FU)-treated CRC cells. CSC-like cells were independently isolated from CRC cells using CD133, CD44 or EphB2-high as markers and confirmed by tumor sphere formation assay. We found that 5-FU increased the apoptotic death of CSC-like CRC cells. Co-application of cetuximab augmented the apoptotic death of CSC-like CRC cells by 5-FU, seemingly through inhibition of 5-FU-induced increases in cell autophagy in CSC-like CRC cells. Together, our data suggest that EGFR monoclonal antibody may sensitize CSC-like CRC cells to 5-FU-induced apoptosis by affecting autophagy.


LncRNA CHRF-induced miR-489 loss promotes metastasis of colorectal cancer via TWIST1/EMT signaling pathway.

  • Youmao Tao‎ et al.
  • Oncotarget‎
  • 2017‎

microRNA-489 (miR-489) is a novel cancer-related miRNAs and functions as a tumor suppressor in human cancers. While, the clinical significance of miR-489 and its role in colorectal cancer (CRC) remain rarely known. Here, we found that the levels of miR-489 in CRC tissues were significantly lower than those in matched tumor-adjacent tissues. Furthermore, decreased levels of miR-489 also observed in CRC cell lines compared to HIEC cells. Clinicopathological analysis revealed that miR-489 underexpression was positively correlated with advanced pT stage, pN stage and AJCC stage. Moreover, miR-489 low expressing CRC patients showed a obvious shorter survival. Functionally, miR-489 restoration inhibited cell migration and invasion as well as epithelial-mesenchymal transition (EMT) in HCT116 cells, while miR-489 loss facilitated these cellular processes in SW480 cells. In vivo experiments revealed that miR-489 overexpression reduced the number of metastatic nodules in nude mice liver. Notably, TWIST1 was recognized as a direct downstream target of miR-489 in CRC cells. Interestingly, TWIST1 restoration abrogated the effects of miR-489 on CRC cells with enhanced cell migration, invasion and EMT process. Furthermore, overexpression of long noncoding RNA cardiac hypertrophy-related factor (lncRNA CHRF) was inversely correlated with miR-489 expression in CRC tissues. CHRF knockdown increased the expression of miR-489 and suppressed EMT events of HCT116 cells, while CHRF overexpression showed opposite effects on miR-489 expression and EMT in SW480 cells. Taken together, this work support the first evidence that lncRNA CHRF-induced miR-489 loss facilitates metastasis and EMT process of CRC cells probably via TWIST1/EMT signaling pathway.


Cyclin A2 regulates homologous recombination DNA repair and sensitivity to DNA damaging agents and poly(ADP-ribose) polymerase (PARP) inhibitors in human breast cancer cells.

  • Wei Wei Gu‎ et al.
  • Oncotarget‎
  • 2017‎

Defects in homologous recombination (HR) repair are found in breast cancers. Intriguingly, breast cancers with defective HR show increased sensitivity to DNA crosslinking agents and poly(ADP-ribose) polymerase (PARP) inhibitors. As such, genes that can affect HR functions have been of high interest in studies aiming to develop biomarkers for predicting response to treatment with these agents. Cyclin A2 is a key component of the core cell cycle machinery. However, whether cyclin A2 dysfunctions could cause HR defect and mediate sensitivity to DNA damaging agents remain unclear. Here we show that loss of cyclin A2 causes high rates of double-strand breaks (DSB) in MCF-7 and MDA-MB-231 cells. The increased DSB was due to defective HR-mediated repair of the breaks, resulting from reduced MRE11 and RAD51 proteins. Cyclin A2 mediates MRE11 abundance through its MRE11 mRNA binding property and RAD51 abundance through inhibition of proteasome degradation of RAD51. Moreover, cyclin A2 depletion hypersensitized the cells to DNA damaging agents, such as cisplatin and melphalan. Our results demonstrate novel roles for cyclin A2 in regulating HR repair and determining sensitivity to DNA cross linkers and PARP inhibitors in breast cancer cells.


Meta-analysis of efficacy and adverse events of erlotinib-based targeted therapies for advanced/metastatic non-small cell lung cancer.

  • Fei Li‎ et al.
  • Oncotarget‎
  • 2017‎

A network meta-analysis evaluating efficacy and adverse events of eight erlotinib-based therapies (erlotinib+placebo, erlotinib+tivantinib, erlotinib+celecoxib, erlotinib+onartuzumab, erlotinib+sunitinib, erlotinib+entinostat, erlotinib+sorafenib, and erlotinib+bevacizumab) for advanced/metastatic non-small-cell lung cancer (NSCLC) was performed. PubMed and Cochrane Library were reviewed, and ten randomized controlled trials were identified in which patients receiving at least one erlotinib-based therapy. Efficacy outcomes, including progression-free survival (PFS), overall survival (OS), overall response rate (ORR), disease control rate (DCR), and adverse outcomes were evaluated. Patients treated with erlotinib+tivantinib, or erlotinib+celecoxib had longer PFS than patients on erlotinib+placebo; patients on erlotinib+tivantinib had longer OS compared to erlotinib+placebo. For PFS, erlotinib+celecoxib had the highest value of surface under the cumulative ranking curve (SUCRA). For OS, erlotinib+tivantinib had the highest SUCRA. For ORR, erlotinib+bevacizumab had the highest SUCRA, while erlotinib+entinostat ranked the lowest. For DCR, erlotinib+sorafenib had the highest SUCRA. Erlotinib+onartuzumab had the highest SUCRA for diarrhea, nausea, vomiting, decreased appetite, and dyspnea. Erlotinib+sunitinib had the lowest SUCRA for diarrhea, nausea, vomiting, and decreased appetite. Erlotinib + entinostat had the lowest SUCRA for fatigue, asthenia, and dyspnea. Our study suggests erlotinib+tivantinib and erlotinib+celecoxib regimens have the best long-term efficacy, while erlotinib+sunitinib and erlotinib+entinostat have the fewest adverse effects in patients with advanced/metastatic NSCLC.


Identification of skin-related lncRNAs as potential biomarkers that involved in Wnt pathways in keloids.

  • Xiao-Jie Sun‎ et al.
  • Oncotarget‎
  • 2017‎

The long non-coding RNAs (lncRNAs) regulating encoding transcripts/genes involved in Wnt signalling pathway in keloids is largely unclear. We used a pathway-focused lncRNA microarray to detect the differentiated expression profiles of both lncRNAs and genes involved in Wnt pathway, thus a total of 116 Wnt-targeted genes and 69 Wnt-related lncRNAs aberrantly expressed in keloids were initially identified. A stepwise bioinformatics was further performed to find skin-related lncRNA/gene pairs in Wnt pathway in keloids. Firstly, an lncRNA/gene co-expression network with clustered functional modules was constructed; simultaneously, 114 Wnt-genes regarding to dermis were online enriched using Phenotype Enrichment. Secondly, 17 skin-related keloid-aberrant Wnt-genes were acquired by overlapping the 114 skin-related Wnt-genes with the 116 keloid-aberrant Wnt-genes. Thirdly, after co-expression coefficient of each lncRNA/gene profile being ranked respectively, 11 top co-expressed lncRNAs characterized with the highest co-expression coefficients to the 17 genes were identified. Fourthly, seven of the 11 top co-expressed lncRNAs exhibiting array-detected aberrant expression in keloids, together with their 12 most interactive Wnt-genes, were selected to undergo in-pair intracellularly quantitative PCR validation in keloids. As a result, four lncRNAs including CACNA1G-AS1, HOXA11-AS, LINC00312 and RP11-91I11.1 with their six paired Wnt-genes undergoing both array-and-qPCR as well as lncRNA-and-gene double validation were finally identified as skin-related lncRNA/gene pairs that involved in Wnt signalling pathway in keloids. In conclusion, in-depth exploration on these easily-accessible lncRNAs in keloids might aid to find the novel target on how to maintain highly recurrent tumours benign via Wnt-involved network regulation.


Activation of the NGF/TrkA signaling pathway attenuates diabetic erectile dysfunction.

  • Yi Hou‎ et al.
  • Oncotarget‎
  • 2017‎

Erectile dysfunction (ED) is a common complication of diabetes mellitus (DM). The exact role of the NGF/TrkA signaling pathway in the pathogenesis of diabetic ED is largely unknown. In the present study, we investigated the role of the NGF/TrkA signaling pathway in Sprague-Dawley rats with diabetic ED. Animals were divided into 2 groups: the normal group and the DM ED model group. The model group included the blank subgroup, the negative control (NC) subgroup, the TrkA subgroup and the TrkA + NGF subgroup. Erectile function, intracavernous pressure (ICP) and mean arterial pressure were measured respectively. Immunohistochemistry was used to examine the number of neuronal nitric oxide synthase (nNOS) expressing nerve fibers. The quantitative real-time polymerase chain reaction was applied to detect the mRNA expressions of NGF and TrkA in the cavernous tissue. Further, Western blotting was conducted to detect the expressions of NGF, TrkA and its downstream ERK pathway-related proteins. Higher erectile frequency, ICP values and diastolic function, more nNOS-positive nerve fibers, and decreased systolic function of the corpus cavernosum smooth muscle were found in the TrkA and TrkA+NGF groups when compared with the blank and the NC groups. Moreover, significantly higher mRNA expressions of NGF and TrkA, and upregulated protein expressions of NGF, TrkA, c-raf, ERK1/2 and CREB1 were found in the TrkA and the TrkA + NGF groups. In conclusion, downregulation in the NGF/TrkA signaling pathway may contribute to the pathogenesis of diabetic ED.


Hypoxia suppresses cylindromatosis (CYLD) expression to promote inflammation in glioblastoma: possible link to acquired resistance to anti-VEGF therapy.

  • Jianying Guo‎ et al.
  • Oncotarget‎
  • 2014‎

Cylindromatosis (CYLD) is a tumor suppressor that regulates signaling pathways by acting as a deubiquitinating enzyme. CYLDdown-regulation occurred in several malignancies, with tumor-promoting effects. Although we found loss of CYLD expression in hypoxic regions of human glioblastoma multiforme (GBM), the most aggressive brain tumor, biological roles of CYLD in GBM remain unknown. This study aimed to determine the biological significance of CYLD down-regulation to GBM progression and therapy. CYLD mRNA transcription was dramatically down-regulated in hypoxic GBM cells, consistent with our clinical observations of human GBM tissues. Hypoxia enhanced both basal and tumor necrosis factor-α-induced expression of various proinflammatory cytokines, whereas CYLD overexpression strongly counteracted these responses. In addition, chronic anti-angiogenic therapy with bevacizumab, an anti-vascular endothelial growth factor (VEGF) antibody, with enhanced hypoxia produced responses similar to these CYLD-regulated proinflammatory responses in a xenograft mouse model. Histologically, CYLD clearly prevented massive immune cell infiltration surrounding necrotic regions, and pseudopalisades appeared in bevacizumab-treated control tumors. Furthermore, CYLD overexpression, which had no impact on survival by itself, significantly improved the prosurvival effect of bevacizumab. These data suggest that CYLD down-regulation is crucial for hypoxia-mediated inflammation in GBM, which may affect the long-term efficacy of anti-VEGF therapy.


MicroRNA-21 promotes TGF-β1-induced epithelial-mesenchymal transition in gastric cancer through up-regulating PTEN expression.

  • Chang Li‎ et al.
  • Oncotarget‎
  • 2016‎

This study aimed to explore the effects of miR-21 and PTEN/Akt signaling pathway on TGF-β1-induced epithelial-mesenchymal transition (EMT) in gastric cancer (GC). GC tissues and adjacent tissues were collected from 83 patients. The qRT-PCR assay was performed to detect miR-21 expression. The expressions of PTEN, Akt and p-Akt were detected by immunohistochemistry. After 48 h of treatment with TGF-β1 (10 ng/mL), the SGC-7901 and KATO-III cells were divided into the blank, negative control (NC), miR-21 inhibitors, PTEN-siRNA and miR-21 inhibitors + PTEN-siRNA groups. EMT related factors and PTEN expressions were detected by qRT-PCR assay and Western blotting. The scratch test was conducted to observe cell migration. Xenograft tumor model in nude mice was used to evaluate the effects of miR-21 on EMT of GC cells in vivo. In GC tissues, the expressions of miR-21, Akt and p-Akt were up-regulated, while PTEN expression was down-regulated. Gene and protein expressions of E-cadherin and PTEN in the miR-21 inhibitors group were higher than the blank, NC, PTEN-siRNA and miR-21 inhibitors + PTEN-siRNA groups, while the expressions of N-cadherin, β-catenin, Vimentin and Slug in the miR-21 inhibitors group were lower than other groups. MiR-21 inhibitors significantly inhibit cell migration and invasion in GC cell lines. In vivo xenograft experiment revealed that miR-21 inhibitor inhibits the growth of transplanted tumor through up-regulating E-cadherin and PTEN expressions and down-regulating the expressions of N-cadherin, β-catenin, Vimentin and Slug. These results suggest that miR-21 could promote TGF-β1-induced EMT in GC cells through up-regulating PTEN expression.


Intrinsic TGF-β2-triggered SDF-1-CXCR4 signaling axis is crucial for drug resistance and a slow-cycling state in bone marrow-disseminated tumor cells.

  • Takuya Nakamura‎ et al.
  • Oncotarget‎
  • 2015‎

Dormant or slow-cycling disseminated tumor cells (DTCs) in bone marrow (BM) are resistant to conventional therapy in various cancers including head and neck squamous cell carcinoma (HNSCC), although the molecular mechanisms remain largely unknown. This study aimed to identify the intrinsic molecular mechanisms underlying drug resistance in BM-DTCs. We used in vivo selection of the human HNSCC cell line HEp3, which mimics non-proliferative BM-DTCs in mice, to establish BM-DTC-derived (BM-HEp3) and lung metastases-derived (Lu-HEp3) sublines. Both sublines had higher migration activity and shortened survival in a murine xenograft model compared with parental (P-HEp3) cells. Slow-cycling BM-HEp3 cells had intrinsically enhanced cisplatin resistance compared with Lu-HEp3 cells, which also manifested this resistance but proliferated rapidly. The drug resistance and slow-cycling state of BM-HEp3 cells depended on enhanced positive feedback of the signaling axis of stromal cell-derived factor-1 (SDF-1)-C-X-C chemokine receptor-4 (CXCR4) via their overexpression. Interestingly, BM-DTCs highly expressed transforming growth factor-beta 2 (TGF-β2) to maintain SDF-1-CXCR4 overexpression. Inhibition of SDF-1-CXCR4 signaling by down-regulating TGF-β2 fully reversed the drug resistance of BM-HEp3 cells via reactivation of cell proliferation. These data suggest that the intrinsic TGF-β2-triggered SDF-1-CXCR4 signaling axis is crucial for drug resistance dependent on a slow-cycling state in BM-DTCs.


Periostin is a negative prognostic factor and promotes cancer cell proliferation in non-small cell lung cancer.

  • Toshimasa Okazaki‎ et al.
  • Oncotarget‎
  • 2018‎

Periostin is a matricellular protein that is secreted by fibroblasts and interacts with various cell-surface integrin molecules. Although periostin is known to support tumor development in human malignancies, little is known about its effect on lung-cancer progression. We here demonstrate that periostin is a negative prognostic factor that increases tumor proliferation through ERK signaling in non-small cell lung carcinoma. We classified 189 clinical specimens from patients with non-small cell lung-cancer according to high or low periostin expression, and found a better prognosis for patients with low rather than high periostin, even in cases of advanced-stage cancer. In a syngenic implantation model, murine Ex3LL lung-cancer cells formed smaller tumor nodules in periostin-/- mice than in periostin+/+ mice, both at the primary site and at metastatic lung sites. An in vitro proliferation assay showed that stimulation with recombinant periostin increased Ex3LL-cell proliferation. We also found that periostin promotes ERK phosphorylation, but not Akt or FAK activation. These findings suggest that periostin represents a potential target in lung-cancer tumor progression.


Systematic review and meta-analysis comparing zoledronic acid administered at 12-week and 4-week intervals in patients with bone metastasis.

  • Ling Cao‎ et al.
  • Oncotarget‎
  • 2017‎

Zoledronic acid is used to treat patients with bone metastasis, but the optimal dosing interval remains controversial. We therefore performed a systematic review and meta-analysis to compare the efficacy and safety of a 12-week interval of zoledronic acid with the standard 4-week interval. Three randomized controlled trials comprising 2650 patients were analyzed. Using a random-effects model, pooled risk ratios (RRs) and 95% confidence intervals (CIs) were calculated. No differences in the occurrence of skeletal-related events (SREs: RR = 0.98; 95% CI = 0.86-1.12; P = 0.80) or grade 3/4 adverse events (RR = 0.91; 95% CI = 0.69-1.20; P = 0.52) were observed between the 12-week and 4-week groups. The 12-week group tended to have lower incidences of osteonecrosis of the jaw [13 (0.98%) vs. 23 (1.73%)] and kidney dysfunction [21 (1.68%) vs. 31 (2.45%)] than the 4-week group, though the difference did not reach statistical significance (RR = 0.58, 95% CI: 0.30-1.12; P = 0.11); (RR = 0.67, 95% CI: 0.39-1.15, P = 0.15). These data show that zoledronic acid administered at 12-week intervals instead of 4-week intervals does not increase the risk of SREs, and may reduce the incidence of osteonecrosis of the jaw and kidney dysfunction. This suggests the 12-week interval with zoledronic acid may be an acceptable treatment option.


Somatic mutations in plasma cell-free DNA are diagnostic markers for esophageal squamous cell carcinoma recurrence.

  • Masami Ueda‎ et al.
  • Oncotarget‎
  • 2016‎

Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive malignancies owing to the high frequency of tumor recurrence. The identification of markers for early ESCC diagnosis and prediction of recurrence is expected to improve the long-term prognosis. Therefore, we searched for associations between tumor recurrence and cell-free DNA (cfDNA) mutations in blood plasma, which contains genetic markers for various cancer types.


Overexpression of TSC-22 (transforming growth factor- β-stimulated clone-22) causes marked obesity, splenic abnormality and B cell lymphoma in transgenic mice.

  • Daisuke Uchida‎ et al.
  • Oncotarget‎
  • 2016‎

In this study, we generated transgenic (Tg) mice, which overexpressed transforming growth factor (TGF)-β stimulated clone-22 (TSC-22), and investigate the functional role of TSC-22 on their development and pathogenesis. We obtained 13 Tg-founders (two mice from C57BL6/J and 11 mice from BDF1). Three of 13 Tg-founders were sterile, and the remaining Tg-founders also could generate only a limited number of the F1 generation. We obtained 32 Tg-F1 mice. Most of the Tg-mice showed marked obesity. Histopathological examination could be performed on 31 Tg-mice; seventeen mice died by some disease in their entire life and 14 mice were killed for examination. Most of the Tg-mice examined showed splenic abnormality, in which marked increase of the megakaryocytes, unclearness of the margin of the red pulp and the white pulp, and the enlargement of the white pulp was observed. B cell lymphoma was developed in 10 (71%) of 14 disease-died F1 mice. These results indicate that constitutive over-expression of TSC-22 might disturb the normal embryogenesis and the normal lipid metabolism, and induce the oncogenic differentiation of hematopoietic cells.


Type 2 diabetes epidemic in East Asia: a 35-year systematic trend analysis.

  • Huiping Yuan‎ et al.
  • Oncotarget‎
  • 2018‎

Facing the challenge of effective prevention type 2 diabetes (T2DM) in China (as part of global health) requires knowledge about both the temporal trend and risk factors variation in T2DM. We searched the PubMed, CNKI, WANFANG, and International Diabetes Federation (IDF) databases for data on the prevalence of T2DM/ IGT (impaired glucose tolerance) published from January 1, 1980 to December 31, 2014 in China, Japan and Korea. The prevalence of T2DM was estimated with 95% confidence intervals (CIs) using random-effects meta-analysis. T2DM prevalence trend in the next 10 years was estimated by using a time series regression model based on the 35 years of data. The 621 articles covered 11.8 million Chinese people, 1.64 million Japanese, and 37.69 million Koreans. The aggregate prevalence of T2DM in China has increased sharply from 1.3% in 1980-1989 to 4.5% in 1990-1999, 6.8% 2000-2009, and 8.7% in 2010-2014. We estimated that by 2025, T2DM prevalence will have grown to 12.5%. Central obesity is the largest preventable cause of T2DM. We also found that female having a very high BMI (body mass index, ≥28 kg/m2) and being an older (≥50 years old) female are next-highest risk factors for T2DM compared with male. Consistent with the patterns characterized for China, T2DM prevalence in Japan increased with aging, and men were more likely to develop T2DM. It was the same as Korea. In the Far East, especially in China, T2DM prevalence will continue to increase until 2025. Statistical analyses were conducted using Stata 12.0 and SPSS 19.0.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: