Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,440 papers

Analyzing Twitter Conversation on Genome-Edited Foods and Their Labeling in Japan.

  • Yutaka Tabei‎ et al.
  • Frontiers in plant science‎
  • 2020‎

In recent years, the research and development of genome editing technology have been progressing rapidly, and the commercial use of genome-edited soybean started in the United States in 2019. A preceding study's results found that there is public concern with regard to the safety of high-tech foods, such as genetically modified foods and genome-edited foods. Twitter, one of the most popular social networks, allows users to post their opinions instantaneously, making it an extremely useful tool to collect what people are actually saying online in a timely manner. Therefore, it was used for collecting data on the users' concerns with and expectations of high-tech foods. This study collected and analyzed Twitter data on genome-edited foods and their labeling from May 25 to October 15 in 2019. Of 14,066 unique user IDs, 94.9% posted 5 or less tweets, whereas 64.8% tweeted only once, indicating that the majority of users who tweeted on this issue are not as intense, as they posted tweets consistently. After a process of refining, there were 28,722 tweets, of which 2,536 tweets (8.8%) were original, 326 (1.1%) were replies, and 25,860 (90%) were retweets. The numbers of tweets increased in response to government announcements and news content in the media. A total of six prominent peaks were detected during the investigation period, proving that Twitter could serve as a tool for monitoring degree of users' interests in real time. The co-occurrence network of original and reply tweets provided different words from various tweets that appeared with a certain frequency. However, the network derived from all tweets seemed to concentrate on words from specific tweets with negative overtones. As a result of sentiment analysis, 54.5% to 62.8% tweets were negative about genome-edited food and the labeling policy of the Consumer Affairs Agency, respectively, indicating a strong demand for mandatory labeling. These findings are expected to contribute to the communication strategy of genome-edited foods toward social implementation by government officers and science communicators.


Genetic Diversity of Invasive Spartina alterniflora Loisel. (Poaceae) Introduced Unintentionally Into Japan and Its Invasion Pathway.

  • Yu Maebara‎ et al.
  • Frontiers in plant science‎
  • 2020‎

Among invasive species, aquatic plants pose serious threats to local biodiversity and ecosystem functions. Spartina alterniflora Loisel. (Poaceae), native to the eastern United States, was introduced unintentionally into Japan (Aichi and Kumamoto Prefectures) at around 2010. This invasive species could easily and rapidly spread to estuarine areas of Japan via vigorous trade and transport, making the prediction of its future invasion necessary. Here, the distribution and structure of the genetic variation of S. alterniflora in Japan were examined using chloroplast DNA (cpDNA) and microsatellite genotyping analyses for clarifying its invasion route and process. According to the cpDNA analysis, S. alterniflora populations in Japan had a single haplotype (haplotype C4) that is the most dominant genotype around the Florida Peninsula, the region of its origin, and is also widely found in the introduced populations in the East Asia. Microsatellite analysis also showed a loss of genetic diversity in Japanese S. alterniflora populations (allelic richness (A R) = 1.20-1.39) compared with that in its native region (A R = 4.58-4.59), suggesting a founder effect on S. alterniflora that might have occurred after invasion of the species into Japan. The principal coordinate analysis and The STRUCTURE analysis indicated that no gene mixing among Japanese local populations (Aichi, northern and southern Kumamoto) was observed, indicating that Spartina invasion occurred independently into these regions. Among the three regions, trading between the ports of northern Kumamoto and the U.S. was obviously lower than trading with China. We concluded that invasive S. alterniflora might have independently invaded Japan at different times through an East Asia route, particularly via China (i.e., secondary introduction). Therefore, it is important to strengthen the quarantine control on the importation of commodities, especially of transport vehicles at potential donor spots (i.e., border control/border biosecurity system), and to share information networks on invasive species between each region/port for minimizing further risks of biological species such as Spartina.


Copy Number Variation in Acetolactate Synthase Genes of Thifensulfuron-Methyl Resistant Alopecurus aequalis (Shortawn Foxtail) Accessions in Japan.

  • Satoshi Iwakami‎ et al.
  • Frontiers in plant science‎
  • 2017‎

Severe infestations of Alopecurus aequalis (shortawn foxtail), a noxious weed in wheat and barley cropping systems in Japan, can occur even after application of thifensulfuron-methyl, a sulfonylurea (SU) herbicide. In the present study, nine accessions of A. aequalis growing in a single wheat field were tested for sensitivity to thifensulfuron-methyl. Seven of the nine accessions survived application of standard field rates of thifensulfuron-methyl, indicating that severe infestations likely result from herbicide resistance. Acetolactate synthase (ALS) is the target enzyme of SU herbicides. Full-length genes encoding ALS were therefore isolated to determine the mechanism of SU resistance. As a result, differences in ALS gene copy numbers among accessions were revealed. Two copies, ALS1 and ALS2, were conserved in all accessions, while some carried two additional copies, ALS3 and ALS4. A single-base deletion in ALS3 and ALS4 further indicated that they represent pseudogenes. No differences in ploidy level were observed between accessions with two or four copies of the ALS gene, suggesting that copy number varies. Resistant plants were found to carry a mutation in either the ALS1 or ALS2 gene, with all mutations causing an amino acid substitution at the Pro197 residue, which is known to confer SU resistance. Transcription of each ALS gene copy was confirmed by reverse transcription PCR, supporting involvement of these mutations in SU resistance. The information on the copy number and full-length sequences of ALS genes in A. aequalis will aid future analysis of the mechanism of resistance.


Spatial and Temporal Variations in Pigment and Species Compositions of Snow Algae on Mt. Tateyama in Toyama Prefecture, Japan.

  • Tomomi Nakashima‎ et al.
  • Frontiers in plant science‎
  • 2021‎

Snow algae are photosynthetic microbes that inhabit the melting snow surface in alpine and polar regions. We analyzed the pigment and species composition of colored snow collected on Mt. Tateyama in Japan during the melting seasons of 2015 and 2016. High-performance liquid chromatographic analyses of the pigments extracted from the colored snow showed that their composition varied within the study area and were classified into four types: Type A (astaxanthin-monoester dominant), Type B (medium astaxanthin-monoester content), Type C (abundant primary carotenoids and free-astaxanthin), and Type D (abundant primary carotenoids and astaxanthin diesters). Types A and B were most commonly observed in the study area, whereas Types C and D appeared only at specific sites. Analysis of the 18S ribosomal RNA (18S rRNA) gene revealed six major amplicon sequence variants (ASVs) of snow algae, belonging to the Sanguina, Chloromonas, and Chlainomonas groups. The relative abundance of the algal ASVs showed that Sanguina was dominant (>48%) in both Types A and B, suggesting that the difference in astaxanthin abundance between the two types was caused by the production of pigments in the algal cells. The algal community structures of Types C and D differed from those of Types A and B, indicating that the primary carotenoids and astaxanthin diesters were derived from certain algal species in these types. Therefore, astaxanthin-rich Sanguina algae mostly induced the red snow that appeared widely in this alpine area; however, they were partially dominated by Chloromonas or Chlainomonas algae, causing different pigment compositions.


Concanavalin A Disrupts the Release of Fibrous Material Necessary for Zygote Formation of a Unicellular Charophycean Alga, Closterium peracerosum-strigosum-littorale Complex.

  • Jun Abe‎ et al.
  • Frontiers in plant science‎
  • 2016‎

The Closterium peracerosum-strigosum-littorale (C. psl.) complex is the best characterized charophycean alga with respect to the processes of sexual reproduction. We examined the effect of concanavalin A (Con A) on physiological and ultrastructural changes during the conjugation of the C. psl. complex. Two heterothallic gametangial cells formed a sexual pair as usual; however, the release of gametes was completely blocked by the addition of Con A. Fluorescein isothiocyanate-labeled Con A bound to the outermost layer of the conjugation papillae of paired cells. In the absence of Con A, the disruption of outer cell walls on the conjugation papillae and the secretion of fibrous materials from the conjugation papillae were observed using a transmission electron microscope, but Con A-treated cells did not show these changes. Instead, a highly electron-dense layer was observed in the outermost papillae, and the excess fibrous materials remained at the inside of the layer. These results suggest that an unknown molecule(s) recognized by Con A is essential for the diffusion of fibrous materials at the conjugation papillae, which is an indispensable step for gamete release during conjugation of the C. psl. complex.


Conservation and Diversity in Gibberellin-Mediated Transcriptional Responses Among Host Plants Forming Distinct Arbuscular Mycorrhizal Morphotypes.

  • Takaya Tominaga‎ et al.
  • Frontiers in plant science‎
  • 2021‎

Morphotypes of arbuscular mycorrhizal (AM) symbiosis, Arum, Paris, and Intermediate types, are mainly determined by host plant lineages. It was reported that the phytohormone gibberellin (GA) inhibits the establishment of Arum-type AM symbiosis in legume plants. In contrast, we previously reported that GA promotes the establishment of Paris-type AM symbiosis in Eustoma grandiflorum, while suppressing Arum-type AM symbiosis in a legume model plant, Lotus japonicus. This raises a hitherto unexplored possibility that GA-mediated transcriptional reprogramming during AM symbiosis is different among plant lineages as the AM morphotypes are distinct. Here, our comparative transcriptomics revealed that several symbiosis-related genes were commonly upregulated upon AM fungal colonization in L. japonicus (Arum-type), Daucus carota (Intermediate-type), and E. grandiflorum (Paris-type). Despite of the similarities, the fungal colonization levels and the expression of symbiosis-related genes were suppressed in L. japonicus and D. carota but were promoted in E. grandiflorum in the presence of GA. Moreover, exogenous GA inhibited the expression of genes involved in biosynthetic process of the pre-symbiotic signal component, strigolactone, which resulted in the reduction of its endogenous accumulation in L. japonicus and E. grandiflorum. Additionally, differential regulation of genes involved in sugar metabolism suggested that disaccharides metabolized in AM roots would be different between L. japonicus and D. carota/E. grandiflorum. Therefore, this study uncovered the conserved transcriptional responses during mycorrhization regardless of the distinct AM morphotype. Meanwhile, we also found diverse responses to GA among phylogenetically distant AM host plants.


Phylogeographic Analysis and Genetic Structure of an Endemic Sino-Japanese Disjunctive Genus Diabelia (Caprifoliaceae).

  • Kun-Kun Zhao‎ et al.
  • Frontiers in plant science‎
  • 2019‎

The Sino-Japanese Floristic Region (SJFR) is a key area for plant phylogeographical research, due to its very high species diversity and disjunct distributions of a large number of species and genera. At present, the root cause and temporal origin of the discontinuous distribution of many plants in the Sino-Japanese flora are still unclear. Diabelia (Caprifoliaceae; Linnaeoideae) is a genus endemic to Asia, mostly in Japan, but two recent discoveries in China raised questions over the role of the East China Sea (ECS) in these species' disjunctions. Chloroplast DNA sequence data were generated from 402 population samples for two regions (rpl32-trnL, and trnH-psbA) and 11 nuclear microsatellite loci were screened for 549 individuals. Haplotype, population-level structure, combined analyses of ecological niche modeling, and reconstruction of ancestral state in phylogenies were also performed. During the Last Glacial Maximum (LGM) period after the Tertiary, Diabelia was potentially widely distributed in southeastern China, the continental shelf of the East China Sea and Japan (excluding Hokkaido). After LGM, all populations in China have disappeared except those in Zhejiang which may represent a Glacial refuge. Populations of Diabelia in Japan have not experienced significant bottleneck effects, and populations have maintained a relatively stable state. The observed discontinuous distribution of Diabelia species between China and Japan are interpreted as the result of relatively ancient divergence. The phylogenetic tree of chloroplast fragments shows the characteristics of multi-origin evolution (except for D. sanguinea). STRUCTURE analysis of nuclear Simple Sequence Repeat (nSSR) showed that the plants of the Diabelia were divided into five gene pools: D. serrata, D. spathulata, D. sanguinea, D. ionostachya (D. spathulata var. spathulata-Korea), and populations of D. ionostachya var. ionostachya in Yamagata prefecture, northern Japan. Molecular evidence provides new insights of Diabelia into biogeography, a potential glacial refuge, and population-level genetic structure within species. In the process of species differentiation, ECS acts as a corridor for two-way migration of animals and plants between China and Japan during glacial maxima, providing the possibility of secondary contact for discontinuously distributed species between China and Japan, or as a filter (creating isolation) during glacial minima. The influence of the ECS in speciation and biogeography of Diabelia in the Tertiary remains unresolved in this study. Understanding origins, evolutionary histories, and speciation will provide a framework for the conservation and cultivation of Diabelia.


Selection of Agar Reagents for Medium Solidification Is a Critical Factor for Metal(loid) Sensitivity and Ionomic Profiles of Arabidopsis thaliana.

  • Shimpei Uraguchi‎ et al.
  • Frontiers in plant science‎
  • 2020‎

For researchers in the plant metal field, the agar reagent used for the solid plate medium is a problematic factor because application of different agar types and even a different lot of the same agar type can mask the plant metal-related phenotypes and impair the reproducibility. In this study, we systematically assessed effects of different agar reagents on metal(loid) sensitivity and element accumulation of the Arabidopsis metal sensitive mutants. Three established mutants (cad1-3, cad1-6, and abcc1/2), and three different types of purified agar reagents (Type A, Type E, and Nacalai) with two independent batches for each reagent were subjected to the analyses. First, we found that element concentrations in the agar reagents largely varied among the agar types. Then the effects of agar reagents on the mutant metal(loid)-sensitivity were examined under As(III), Hg(II), Cd(II), and excess Zn(II) conditions. A significant variation of the mutant metal(loid)-sensitivity was observed among the different agar plates but the variation depended on the combination of metal(loid) stress and agar reagents. Briefly, the type-dependent variation was more evident under As(III) and Hg(II) than Cd(II) or excess Zn(II) conditions. A lot-dependent variation was also observed for Type A and Type E but not for Nacalai: hypersensitive phenotypes of cad1-3, cad1-6, and abcc1/2 under As(III) or Hg(II) treatments were diminished when different batches of the Type A or Type E agar types were used. We also found a significant variation of As and Hg accumulation in the wild-type and cad1-3. Plant As and Hg concentrations were remarkably higher and the difference between the genotypes was more evident when grown with Type A agar plates. We finally analyzed ionomic profiles in the plants exposed to As(III) stress. Agar-type specific ionomic changes in cad1-3 were more observed with the Type A plates than with the Nacalai plates. The presented results overall suggest that suitability of agar reagents for metal(loid)-related phenotyping depends on the experimental design, and an inappropriate selection of agar reagents can mask even very clear phenotypes of the established mutant like cad1-3. We also discuss perspectives on the agar problem in the plant metal study.


Functional Update of the Auxiliary Proteins PsbW, PsbY, HCF136, PsbN, TerC and ALB3 in Maintenance and Assembly of PSII.

  • Magdalena Plöchinger‎ et al.
  • Frontiers in plant science‎
  • 2016‎

Assembly of Photosystem (PS) II in plants has turned out to be a highly complex process which, at least in part, occurs in a sequential order and requires many more auxiliary proteins than subunits present in the complex. Owing to the high evolutionary conservation of the subunit composition and the three-dimensional structure of the PSII complex, most plant factors involved in the biogenesis of PSII originated from cyanobacteria and only rarely evolved de novo. Furthermore, in chloroplasts the initial assembly steps occur in the non-appressed stroma lamellae, whereas the final assembly including the attachment of the major LHCII antenna proteins takes place in the grana regions. The stroma lamellae are also the place where part of PSII repair occurs, which very likely also involves assembly factors. In cyanobacteria initial PSII assembly also occurs in the thylakoid membrane, in so-called thylakoid centers, which are in contact with the plasma membrane. Here, we provide an update on the structures, localisations, topologies, functions, expression and interactions of the low molecular mass PSII subunits PsbY, PsbW and the auxiliary factors HCF136, PsbN, TerC and ALB3, assisting in PSII complex assembly and protein insertion into the thylakoid membrane.


Mutations in nuclear pore complex promote osmotolerance in Arabidopsis by suppressing the nuclear translocation of ACQOS and its osmotically induced immunity.

  • Kento Mori‎ et al.
  • Frontiers in plant science‎
  • 2024‎

We have previously reported a wide variation in salt tolerance among Arabidopsis thaliana accessions and identified ACQOS, encoding a nucleotide-binding leucine-rich repeat (NLR) protein, as the causal gene responsible for the disturbance of acquired osmotolerance induced after mild salt stress. ACQOS is conserved among Arabidopsis osmosensitive accessions, including Col-0. In response to osmotic stress, it induces detrimental autoimmunity, resulting in suppression of osmotolerance, but how ACQOS triggers autoimmunity remains unclear. Here, we screened acquired osmotolerance (aot) mutants from EMS-mutagenized Col-0 seeds and isolated the aot19 mutant. In comparison with the wild type (WT), this mutant had acquired osmotolerance and decreased expression levels of pathogenesis-related genes. It had a mutation in a splicing acceptor site in NUCLEOPORIN 85 (NUP85), which encodes a component of the nuclear pore complex. A mutant with a T-DNA insertion in NUP85 acquired osmotolerance similar to aot19. The WT gene complemented the osmotolerant phenotype of aot19. We evaluated the acquired osmotolerance of five nup mutants of outer-ring NUPs and found that nup96, nup107, and aot19/nup85, but not nup43 or nup133, showed acquired osmotolerance. We examined the subcellular localization of the GFP-ACQOS protein and found that its nuclear translocation in response to osmotic stress was suppressed in aot19. We suggest that NUP85 is essential for the nuclear translocation of ACQOS, and the loss-of-function mutation of NUP85 results in acquired osmotolerance by suppressing ACQOS-induced autoimmunity in response to osmotic stress.


Chitin Nanofiber Elucidates the Elicitor Activity of Polymeric Chitin in Plants.

  • Mayumi Egusa‎ et al.
  • Frontiers in plant science‎
  • 2015‎

Chitin, an N-acetyl-D-glucosamine polymer, is a component of fungal cell walls and a microbe/pathogen-associated molecular pattern that elicits plant defense responses. As polymeric chitin is difficult to handle due to its insolubility in water, many studies on chitin-induced immune responses have used water-soluble low-molecular weight chitin instead. Thus, it is unclear if polymeric chitin can induce resistance. Here, we examined the elicitor activity of chitin nanofiber (CNF) of submicron thickness prepared from polymeric chitin. CNF showed a high dispersing ability in water and induced both reactive oxygen species (ROS) production and chitin-induced defense-related gene expression in Arabidopsis thaliana seedlings. The Arabidopsis chitin elicitor receptor kinase 1 (Atcerk1) mutant, which is impaired in chitin perception, also failed to respond to CNF. CNF exposure triggered ROS generation in suspension-cultured cells from Oryza sativa. Furthermore, pre-treatment of Arabidopsis leaves with CNF effectively reduced pathogen infection by both the fungus Alternaria brassicicola and the bacterium Pseudomonas syringae pv. tomato DC3000. These results demonstrate that CNF has elicitor activity and will help define the role of polymeric chitin in plant immune responses.


SnRK1 Kinase and the NAC Transcription Factor SOG1 Are Components of a Novel Signaling Pathway Mediating the Low Energy Response Triggered by ATP Depletion.

  • Hidefumi Hamasaki‎ et al.
  • Frontiers in plant science‎
  • 2019‎

Plant growth is strictly controlled by cell division, elongation, and differentiation for which adequate supplies of intracellular ATP are required. However, it is unclear how changes in the amount of intracellular ATP affect cell division and growth. To reveal the specific pathway dependent on ATP concentration, we performed analyses on the Arabidopsis mitochondria mutation sd3. The mutant is tiny, a result of a low amount of ATP caused by the disruption of Tim21, a subunit of the TIM23 protein complex localized in the inner membrane of the mitochondria. Loss of function of suppressor of gamma response 1 (SOG1) also restored the dwarf phenotype of wild type treated with antimycin A, a blocker of ATP synthesis in mitochondria. The sd3 phenotype is partially restored by the introduction of sog1, suppressor of gamma response 1, and kin10/kin11, subunits of Snf1-related kinase 1 (SnRK1). Additionally, SOG1 interacted with SnRK1, and was modified by phosphorylation in planta only after treatment with antimycin A. Transcripts of several negative regulators of the endocycle were up-regulated in the sd3 mutant, and this high expression was not observed in sd3sog1 and sd3kin11. We suggest that there is a novel regulatory mechanism for the control of plant cell cycle involving SnRK1 and SOG1, which is induced by low amounts of intracellular ATP, and controls plant development.


Real-Time PCR Assay for the Diagnosis and Quantification of Co-infections by Diaporthe batatas and Diaporthe destruens in Sweet Potato.

  • Kazuki Fujiwara‎ et al.
  • Frontiers in plant science‎
  • 2021‎

Foot rot disease caused by Diaporthe destruens (formerly Plenodomus destruens) has become a major concern for the production of sweet potato [Ipomoea batatas (L.) Lam.] in Japan. A related fungus Diaporthe batatas, which causes dry rot disease of sweet potato, is native and is widespread in fields in Japan. The similar characteristics of these two pathogens pose a challenge for conventional disease diagnosis. Currently, there are no effective molecular measures for identifying and distinguishing D. destruens and D. batatas. Here, we demonstrate a real-time PCR assay that distinguishes and quantifies D. batatas and D. destruens from co-infected sweet potato. The assay was performed with various simulated DNA combinations of D. batatas and D. destruens ranging from 1:1 to 1:100000. The assay was also used with the ratios of D. batatas: D. destruens: sweet potato DNA ranging from 1:1:1 to 1:1:100000. These assays produced a specific amplification product for each of the pathogens, and quantified the fungal biomass over the entire range tested without detecting false positives. The assay was validated by using infected sweet potato collected from various fields; it showed sufficient sensitivity and specificity to quantify and distinguish D. batatas and D. destruens from these field samples. Thus, our real-time PCR assay would be a useful tool for diagnosis of D. batatas and D. destruens and is expected to provide the foundation for the design of integrated disease management strategies for foot rot disease in sweet potato.


Ethanol Enhances High-Salinity Stress Tolerance by Detoxifying Reactive Oxygen Species in Arabidopsis thaliana and Rice.

  • Huong Mai Nguyen‎ et al.
  • Frontiers in plant science‎
  • 2017‎

High-salinity stress considerably affects plant growth and crop yield. Thus, developing techniques to enhance high-salinity stress tolerance in plants is important. In this study, we revealed that ethanol enhances high-salinity stress tolerance in Arabidopsis thaliana and rice. To elucidate the molecular mechanism underlying the ethanol-induced tolerance, we performed microarray analyses using A. thaliana seedlings. Our data indicated that the expression levels of 1,323 and 1,293 genes were upregulated by ethanol in the presence and absence of NaCl, respectively. The expression of reactive oxygen species (ROS) signaling-related genes associated with high-salinity tolerance was upregulated by ethanol under salt stress condition. Some of these genes encode ROS scavengers and transcription factors (e.g., AtZAT10 and AtZAT12). A RT-qPCR analysis confirmed that the expression levels of AtZAT10 and AtZAT12 as well as AtAPX1 and AtAPX2, which encode cytosolic ascorbate peroxidases (APX), were higher in ethanol-treated plants than in untreated control plants, when exposure to high-salinity stress. Additionally, A. thaliana cytosolic APX activity increased by ethanol in response to salinity stress. Moreover, histochemical analyses with 3,3'-diaminobenzidine (DAB) and nitro blue tetrazolium (NBT) revealed that ROS accumulation was inhibited by ethanol under salt stress condition in A. thaliana and rice, in which DAB staining data was further confirmed by Hydrogen peroxide (H2O2) content. These results suggest that ethanol enhances high-salinity stress tolerance by detoxifying ROS. Our findings may have implications for improving salt-stress tolerance of agriculturally important field-grown crops.


A Homoploid Hybrid Between Wild Vigna Species Found in a Limestone Karst.

  • Yu Takahashi‎ et al.
  • Frontiers in plant science‎
  • 2015‎

Genus Vigna comprise several domesticated species including cowpea and mungbean, and diverse wild species. We found an introgressive hybrid population derived from two wild species, Vigna umbellata and Vigna exilis, in Ratchaburi district, Thailand. The hybrid was morphologically similar to V. umbellata but habituated in a limestone rock mountain, which is usually dominated by V. exilis. Analyzing simple sequence repeat loci indicated the hybrid has undergone at least one round of backcross by V. umbellata. We found the hybrid acquired vigorous growth from V. umbellata and drought tolerance plus early flowering from V. exilis, and thus has taken over some habitats of V. exilis in limestone karsts. Given the wide crossability of V. umbellata, the hybrid can be a valuable genetic resource to improve drought tolerance of some domesticated species.


Effects of the sliaa9 Mutation on Shoot Elongation Growth of Tomato Cultivars.

  • Chihiro Abe-Hara‎ et al.
  • Frontiers in plant science‎
  • 2021‎

Tomato INDOLE-3-ACETIC ACID9 (SlIAA9) is a transcriptional repressor in auxin signal transduction, and SlIAA9 knockout tomato plants develop parthenocarpic fruits without fertilization. We generated sliaa9 mutants with parthenocarpy in several commercial tomato cultivars (Moneymaker, Rio Grande, and Ailsa Craig) using CRISPR-Cas9, and null-segregant lines in the T1 generation were isolated by self-pollination, which was confirmed by PCR and Southern blot analysis. We then estimated shoot growth phenotypes of the mutant plants under different light (low and normal) conditions. The shoot length of sliaa9 plants in Moneymaker and Rio Grande was smaller than those of wild-type cultivars in low light conditions, whereas there was not clear difference between the mutant of Ailsa Craig and the wild-type under both light conditions. Furthermore, young seedlings in Rio Grande exhibited shade avoidance response in hypocotyl growth, in which the hypocotyl lengths were increased in low light conditions, and sliaa9 mutant seedlings of Ailsa Craig exhibited enhanced responses in this phenotype. Fruit production and growth rates were similar among the sliaa9 mutant tomato cultivars. These results suggest that control mechanisms involved in the interaction of AUX/IAA9 and lights condition in elongation growth differ among commercial tomato cultivars.


Exogenous Silicon Attenuates Cadmium-Induced Oxidative Stress in Brassica napus L. by Modulating AsA-GSH Pathway and Glyoxalase System.

  • Mirza Hasanuzzaman‎ et al.
  • Frontiers in plant science‎
  • 2017‎

Cadmium (Cd) brings a devastating health hazard to human being as a serious consequence of agricultural and environmental contamination. We demonstrated the protective effect of silicon (Si) on cadmium (Cd)-stressed rapeseed (Brassica napus L. cv. BINA Sharisha 3) plants through regulation of antioxidant defense and glyoxalase systems. Twelve-day-old seedlings were exposed to Cd stress (0.5 and 1.0 mM CdCl2) separately and in combination with Si (SiO2, 1.0 mM) for 2 days. Cadmium toxicity was evident by an obvious oxidative stress through sharp increases in H2O2 content and lipid peroxidation (malondialdehyde, MDA content), and visible sign of superoxide and H2O2. Cadmium stress also decreased the content of ascorbate (AsA) and glutathione (GSH) as well as their redox pool. The activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and catalase (CAT) were decreased by Cd while ascorbate peroxidase (APX) and glutathione S-transferase (GST) activities were increased. The enzymes of glyoxalase system (glyoxalase I, Gly I and glyoxalase II, Gly II) were also inefficient under Cd stress. However, exogenous application of Si in Cd treated seedlings reduced H2O2 and MDA contents and improved antioxidant defense mechanism through increasing the AsA and GSH pools and activities of AsA-GSH cycle (APX, MDHAR, DHAR and GR) and glyoxalase system (Gly I and Gly II) enzymes and CAT. Thus Si reduced oxidative damage in plants to make more tolerant under Cd stress through augmentation of different antioxidant components and methylglyoxal detoxification system.


Failure of Pollen Attachment to the Stigma Triggers Elongation of Stigmatic Papillae in Arabidopsis thaliana.

  • Kazuma Katano‎ et al.
  • Frontiers in plant science‎
  • 2020‎

Pollination is one of key determinants of yield production in important crops, such as grains and beans in which seeds are utilized as agricultural products. Thus, to fulfil food demand for growing world population, it is necessary to elucidate the mechanisms that regulate pollination, leading to increase in yield production. In this study, we compared detailed morphological characteristics of reproductive organs in Arabidopsis thaliana grown under control conditions or subjected to heat stress. Shorter length of anthers, filaments, and petals were observed in plants subjected to heat stress compared to those under control conditions. In contrast, heat stress resulted in enlargement of stigma via elongation of stigmatic papillae. Classification of stigmas based on patterns of pollen attachment indicated that pollen attachment to stigma clearly decreased under heat stress. In addition, artificial pollination experiment demonstrated that stigma shrank when pollen attached, but, continued to enlarge in the absence of pollen. Such modulation of stigma size depending on the presence or absence of pollen was observed both under control and heat stressed conditions. Taken together, these results suggest that elongation of stigmatic papillae is associated with failure of pollen attachment to the stigma, rather than heat stress. Furthermore, histochemical staining experiments suggest that Ca2+ derived from pollen together with O2 - might be associated with morphological alteration of stigma depending on the patterns of pollen attachment.


Introgression of the Aegilops speltoides Su1-Ph1 Suppressor into Wheat.

  • Hao Li‎ et al.
  • Frontiers in plant science‎
  • 2017‎

Meiotic pairing between homoeologous chromosomes in polyploid wheat is inhibited by the Ph1 locus on the long arm of chromosome 5 in the B genome. Aegilops speltoides (genomes SS), the closest relative of the progenitor of the wheat B genome, is polymorphic for genetic suppression of Ph1. Using this polymorphism, two major suppressor loci, Su1-Ph1 and Su2-Ph1, have been mapped in Ae. speltoides. Su1-Ph1 is located in the distal, high-recombination region of the long arm of the Ae. speltoides chromosome 3S. Its location and tight linkage to marker Xpsr1205-3S makes Su1-Ph1 a suitable target for introgression into wheat. Here, Xpsr1205-3S was introgressed into hexaploid bread wheat cv. Chinese Spring (CS) and from there into tetraploid durum wheat cv. Langdon (LDN). Sequential fluorescence in situ hybridization and genomic in situ hybridization showed that an Ae. speltoides segment with Xpsr1205-3S replaced the distal end of the long arm of chromosome 3A. In the CS genetic background, the chromosome induced homoeologous chromosome pairing in interspecific hybrids with Ae. peregrina but not in progenies from crosses involving alien disomic substitution lines. In the LDN genetic background, the chromosome induced homoeologous chromosome pairing in both interspecific hybrids and progenies from crosses involving alien disomic substitution lines. We conclude that the recombined chromosome harbors Su1-Ph1 but its expression requires expression of complementary gene that is present in LDN but absent in CS. We suggest that it is unlikely that Su1-Ph1 and ZIP4-1, a paralog of Ph1 located on wheat chromosomes 3A and 3B and Ae. tauschii chromosome 3D, are equivalent. The utility of Su1-Ph1 for induction of recombination between homoeologous chromosomes in wheat is illustrated.


Leaf Morphology, Photosynthetic Performance, Chlorophyll Fluorescence, Stomatal Development of Lettuce (Lactuca sativa L.) Exposed to Different Ratios of Red Light to Blue Light.

  • Jun Wang‎ et al.
  • Frontiers in plant science‎
  • 2016‎

Red and blue light are both vital factors for plant growth and development. We examined how different ratios of red light to blue light (R/B) provided by light-emitting diodes affected photosynthetic performance by investigating parameters related to photosynthesis, including leaf morphology, photosynthetic rate, chlorophyll fluorescence, stomatal development, light response curve, and nitrogen content. In this study, lettuce plants (Lactuca sativa L.) were exposed to 200 μmol⋅m(-2)⋅s(-1) irradiance for a 16 h⋅d(-1) photoperiod under the following six treatments: monochromatic red light (R), monochromatic blue light (B) and the mixture of R and B with different R/B ratios of 12, 8, 4, and 1. Leaf photosynthetic capacity (A max) and photosynthetic rate (P n) increased with decreasing R/B ratio until 1, associated with increased stomatal conductance, along with significant increase in stomatal density and slight decrease in stomatal size. P n and A max under B treatment had 7.6 and 11.8% reduction in comparison with those under R/B = 1 treatment, respectively. The effective quantum yield of PSII and the efficiency of excitation captured by open PSII center were also significantly lower under B treatment than those under the other treatments. However, shoot dry weight increased with increasing R/B ratio with the greatest value under R/B = 12 treatment. The increase of shoot dry weight was mainly caused by increasing leaf area and leaf number, but no significant difference was observed between R and R/B = 12 treatments. Based on the above results, we conclude that quantitative B could promote photosynthetic performance or growth by stimulating morphological and physiological responses, yet there was no positive correlation between P n and shoot dry weight accumulation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: