Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 222 papers

miR-224, miR-147b and miR-31 associated with lymph node metastasis and prognosis for lung adenocarcinoma by regulating PRPF4B, WDR82 or NR3C2.

  • Yan Wang‎ et al.
  • PeerJ‎
  • 2020‎

The present study is to screen lymph node metastasis-related microRNAs (miRNAs) in lung adenocarcinoma (LUAD) and uncover their underlying mechanisms.


Decreased expression of miR-3135b reduces sensitivity to 5-fluorouracil in colorectal cancer by direct repression of PIM1.

  • Yan Wang‎ et al.
  • Experimental and therapeutic medicine‎
  • 2021‎

5-Fluorouracil (5-FU)-based chemotherapy is the conventional treatment approach for patients with colorectal cancer (CRC). However, de novo and acquired resistance to 5-FU are frequently observed during treatment, which eventually lead to patients succumbing to the disease. Accumulating data have revealed an association of CRC resistance to 5-FU with aberrant expression of microRNAs (miRs). In the present study, Cell Counting Kit-8 was performed to measure cell viability, flow cytometry was performed to detect cell apoptosis, reverse transcription-quantitative PCR was conducted to measure proviral integration site for Moloney murine leukemia virus 1 (PIM1) and miR-3135b expression, western blotting was conducted to measure PIM1 expression. Microarray data analysis indicated that the level of miR-3135b expression was decreased in patients with recurrent CRC that were treated with 5-FU when compared with non-recurrent cases. Overexpression of miR-3135b increased the sensitivity of CRC cells to 5-FU treatment. Moreover, PIM1 was identified as a target gene of miR-3135b using bioinformatics analysis, reverse transcription-quantitative PCR and western blotting. The direct interaction between these two targets was confirmed by luciferase reporter assays. Notably, PIM1 overexpression compensated the effect of miR-3135b in CRC cells. Furthermore, an inverse correlation between PIM1 mRNA expression levels and miR-3135b expression was observed in clinical samples. Therefore, the present study identified miR-3135b as a novel regulator of 5-FU sensitivity in CRC.


Identification of differentially expressed genes in MG63 osteosarcoma cells with drug‑resistance by microarray analysis.

  • Rui Chen‎ et al.
  • Molecular medicine reports‎
  • 2019‎

Osteosarcoma is the most common type of primary malignant bone tumor, with extremely poor prognosis in patients with metastatic disease and resistance to therapy, such as multidrug regimens. The mechanisms of drug resistance are quite complex and have not been fully elucidated; thus, novel therapeutic targets should be identified to alleviate drug resistance in osteosarcoma. In the present study, the transcriptomes of the human osteosarcoma cell line MG63 and vincristine (VCR)‑resistant MG63 cells were compared by microarray analysis. A total of 1,300 genes (602 upregulated and 698 downregulated) were reported to be differentially expressed in MG63/VCR compared with MG63 cells. Bioinformatics analysis predicted that the differentially expressed genes were mainly enriched in the B cell receptor, UVA‑induced mitogen‑activated protein kinases and receptor tyrosine kinase 2/3 signaling pathways. In the present study, 10 of the dysregulated genes, including roundabout homolog 1, death‑associated protein kinase 1 and A‑kinase anchor protein 12 were further evaluated by reverse transcription‑quantitative polymerase chain reaction. These results may aid the validation of candidate biomarkers for the treatment and prognosis of osteosarcoma, and provide novel insight into the molecular mechanisms underlying the drug resistance of osteosarcoma cells.


Multiclassification of Endoscopic Colonoscopy Images Based on Deep Transfer Learning.

  • Yan Wang‎ et al.
  • Computational and mathematical methods in medicine‎
  • 2021‎

With the continuous improvement of human living standards, dietary habits are constantly changing, which brings various bowel problems. Among them, the morbidity and mortality rates of colorectal cancer have maintained a significant upward trend. In recent years, the application of deep learning in the medical field has become increasingly spread aboard and deep. In a colonoscopy, Artificial Intelligence based on deep learning is mainly used to assist in the detection of colorectal polyps and the classification of colorectal lesions. But when it comes to classification, it can lead to confusion between polyps and other diseases. In order to accurately diagnose various diseases in the intestines and improve the classification accuracy of polyps, this work proposes a multiclassification method for medical colonoscopy images based on deep learning, which mainly classifies the four conditions of polyps, inflammation, tumor, and normal. In view of the relatively small number of data sets, the network firstly trained by transfer learning on ImageNet was used as the pretraining model, and the prior knowledge learned from the source domain learning task was applied to the classification task about intestinal illnesses. Then, we fine-tune the model to make it more suitable for the task of intestinal classification by our data sets. Finally, the model is applied to the multiclassification of medical colonoscopy images. Experimental results show that the method in this work can significantly improve the recognition rate of polyps while ensuring the classification accuracy of other categories, so as to assist the doctor in the diagnosis of surgical resection.


Probing inhibition mechanisms of adenosine deaminase by using molecular dynamics simulations.

  • Xiaopian Tian‎ et al.
  • PloS one‎
  • 2018‎

Adenosine deaminase (ADA) catalyzes the deamination of adenosine, which is important in purine metabolism. ADA is ubiquitous to almost all human tissues, and ADA abnormalities have been reported in various diseases, including rheumatoid arthritis. ADA can be divided into two conformations based on the inhibitor that it binds to: open and closed forms. Here, we chose three ligands, namely, FR117016 (FR0), FR221647 (FR2) (open form), and HDPR (PRH, closed form), to investigate the inhibition mechanism of ADA and its effect on ADA through molecular dynamics simulations. In open forms, Egap and electrostatic potential (ESP) indicated that electron transfer might occur more easily in FR0 than in FR2. Binding free energy and hydrogen bond occupation revealed that the ADA-FR0 complex had a more stable structure than ADA-FR2. The probability of residues Pro159 to Lys171 of ADA-FR0 and ADA-FR2 to form a helix moderately increased compared with that in nonligated ADA. In comparison with FR0 and FR2 PRH could maintain ADA in a closed form to inhibit the function of ADA. The α7 helix (residues Thr57 to Ala73) of ADA in the closed form was mostly unfastened because of the effect of PRH. The number of H bonds and the relative superiority of the binding free energy indicated that the binding strength of PRH to ADA was significantly lower than that of an open inhibitor, thereby supporting the comparison of the inhibitory activities of the three ligands. Alanine scanning results showed that His17, Gly184, Asp295, and Asp296 exerted the greatest effects on protein energy, suggesting that they played crucial roles in binding to inhibitors. This study served as a theoretical basis for the development of new ADA inhibitors.


Interactions between three typical endocrine-disrupting chemicals (EDCs) in binary mixtures exposure on myocardial differentiation of mouse embryonic stem cell.

  • Ren Zhou‎ et al.
  • Chemosphere‎
  • 2017‎

In recent years, various kinds of endocrine-disrupting chemicals (EDCs) have been detected in human blood and urine. Thus, it was important to investigate the combined toxicity effect of EDCs. In the present study, we evaluated the individual and combined developmental toxicities of three classic EDCs: perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and bisphenol A (BPA) by embryonic stem cell test (EST). The similarities and differences between combination of same chemical group as well as different chemical groups were investigated in this research. Our results showed that the three compounds were all classified as weak embryotoxicity. The results of co-exposure revealed that there was synergistic action in combination of PFOS and BPA on myocardial differentiation. However, in all endpoints, the combined effects between PFOA with PFOS or BPA were both additive action. Therefore, we concluded that the additive effects were found in most different EDC mixtures whether they had similar structure or not. On the other hand, synergistic action was observed in a mixture of EDCs that belonged to a different chemical groups.


ANTP-SMACN7 fusion peptide alone induced high linear energy transfer irradiation radiosensitization in non-small cell lung cancer cell lines.

  • Yi Xie‎ et al.
  • Cancer biology & medicine‎
  • 2021‎

The aim of the present study was to investigate the mechanisms responsible for the radiation-sensitizing effect of antennapedia proteins, ANTP-SMACN7, on lung cancer cells treated with accelerated carbon and Fe particle irradiation.


Digital gene atlas of neonate common marmoset brain.

  • Tomomi Shimogori‎ et al.
  • Neuroscience research‎
  • 2018‎

Interest in the common marmoset (Callithrix jacchus) as a primate model animal has grown recently, in part due to the successful demonstration of transgenic marmosets. However, there is some debate as to the suitability of marmosets, compared to more widely used animal models, such as the macaque monkey and mouse. Especially, the usage of marmoset for animal models of human cognition and mental disorders, is still yet to be fully explored. To examine the prospects of the marmoset model for neuroscience research, the Marmoset Gene Atlas (https://gene-atlas.bminds.brain.riken.jp/) provides a whole brain gene expression atlas in the common marmoset. We employ in situ hybridization (ISH) to systematically analyze gene expression in neonate marmoset brains, which allows us to compare expression with other model animals such as mouse. We anticipate that these data will provide sufficient information to develop tools that enable us to reveal marmoset brain structure, function, cellular and molecular organization for primate brain research.


On-skin paintable biogel for long-term high-fidelity electroencephalogram recording.

  • Chunya Wang‎ et al.
  • Science advances‎
  • 2022‎

Long-term high-fidelity electroencephalogram (EEG) recordings are critical for clinical and brain science applications. Conductive liquid-like or solid-like wet interface materials have been conventionally used as reliable interfaces for EEG recording. However, because of their simplex liquid or solid phase, electrodes with them as interfaces confront inadequate dynamic adaptability to hairy scalp, which makes it challenging to maintain stable and efficient contact of electrodes with scalp for long-term EEG recording. Here, we develop an on-skin paintable conductive biogel that shows temperature-controlled reversible fluid-gel transition to address the abovementioned limitation. This phase transition endows the biogel with unique on-skin paintability and in situ gelatinization, establishing conformal contact and dynamic compliance of electrodes with hairy scalp. The biogel is demonstrated as an efficient interface for long-term high-quality EEG recording over several days and for the high-performance capture and classification of evoked potentials. The paintable biogel offers a biocompatible and long-term reliable interface for EEG-based systems.


A durable nanomesh on-skin strain gauge for natural skin motion monitoring with minimum mechanical constraints.

  • Yan Wang‎ et al.
  • Science advances‎
  • 2020‎

Ultraconformable strain gauge can be applied directly to human skin for continuous motion activity monitoring, which has seen widespread application in interactive robotics, human motion detection, personal health monitoring, and therapeutics. However, the development of an on-skin strain gauge that can detect human body motions over a long period of time without disturbing the natural skin movements remains a challenge. Here, we present an ultrathin and durable nanomesh strain gauge for continuous motion activity monitoring that minimizes mechanical constraints on natural skin motions. The device is made from reinforced polyurethane-polydimethylsiloxane (PU-PDMS) nanomeshes and exhibits excellent sustainability, linearity, and durability with low hysteresis. Its thinness geometry and softness provide minimum mechanical interference on natural skin deformations. During speech, the nanomesh-attached face exhibits skin strain mapping comparable to that of a face without nanomeshes. We demonstrate long-term facial stain mapping during speech and the capability for real-time stable full-range body movement detection.


Significant decrease in peripheral regulatory B cells is an immunopathogenic feature of dermatomyositis.

  • Wenli Li‎ et al.
  • Scientific reports‎
  • 2016‎

Regulatory B cells (Bregs) are critical in maintaining self-tolerance. Their role in dermatomyositis (DM), an autoimmune disease characterized by inappropriate regulation of hyperactivated B and T cells, has not been clearly defined. In the current study, we performed flow cytometry analysis of studied CD19(+) CD24(high)CD38(high) Breg subpopulations in blood samples from 30 patients with DM, 37 diseased controls and 23 healthy controls. A significant decrease was observed in the frequency of Bregs in DM patients compared to that in diseased controls (p < 0.0001) and in healthy controls (p < 0.0001). And the prevalence of Bregs deficiency (defined as Bregs/B cells < 0.50% in this study) in DM patients went as high as 73.3%. Furthermore, DM patients with positive myositis specific autoantibody often had lower Bregs levels than negative patients (p = 0.036), and lower level of Bregs was also found in DM patients with interstitial lung disease than in DM patients without (p = 0.041). In a follow-up study, seven DM patients were considered to be in remission stage, and their Breg levels were found to have significantly increased after treatment (p = 0.022). Our research revealed that Breg deficiency is an immunopathogenic feature of DM and provided insights into the design of new immunotherapy target for DM clinical interventions.


A novel Escherichia coli O157:H7 clone causing a major hemolytic uremic syndrome outbreak in China.

  • Yanwen Xiong‎ et al.
  • PloS one‎
  • 2012‎

An Escherichia coli O157:H7 outbreak in China in 1999 caused 177 deaths due to hemolytic uremic syndrome. Sixteen outbreak associated isolates were found to belong to a new clone, sequence type 96 (ST96), based on multilocus sequence typing of 15 housekeeping genes. Whole genome sequencing of an outbreak isolate, Xuzhou21, showed that the isolate is phylogenetically closely related to the Japan 1996 outbreak isolate Sakai, both of which share the most recent common ancestor with the US outbreak isolate EDL933. The levels of IL-6 and IL-8 of peripheral blood mononuclear cells induced by Xuzhou21 and Sakai were significantly higher than that induced by EDL933. Xuzhou21 also induced a significantly higher level of IL-8 than Sakai while both induced similar levels of IL-6. The expression level of Shiga toxin 2 in Xuzhou21 induced by mitomycin C was 68.6 times of that under non-inducing conditions, twice of that induced in Sakai (32.7 times) and 15 times higher than that induced in EDL933 (4.5 times). Our study shows that ST96 is a novel clone and provided significant new insights into the evolution of virulence of E. coli O157:H7.


MUSTN1 is an indispensable factor in the proliferation, differentiation and apoptosis of skeletal muscle satellite cells in chicken.

  • Zhi Hu‎ et al.
  • Experimental cell research‎
  • 2021‎

The yield and quality of the skeletal muscle are important economic traits in livestock and poultry production. The musculoskeletal embryonic nuclear protein 1 (MUSTN1) gene has been shown to be associated with embryonic development, postnatal growth, bone and skeletal muscle regeneration; however, its function in the skeletal muscle development of chicken remains unclear. Therefore, in this study, we observed that the expression level of MUSTN1 increased in conjunction with the proliferation of chicken skeletal muscle satellite cells (SMSCs). Knockdown of MUSTN1 in SMSCs downregulated the expression of cell proliferation genes as Pax7, CDK-2 and differentiation-relate genes including MyoD, MyoG, MyHC and MyH1B, whereas it upregulates the expression of cell apoptosis gene (Caspase-3) (P < 0.05). However, the combined analysis of CCK-8 and EdU showed that the cell vitality and EdU-positive cells of the si-MUSTN1 transfected group were significantly lower than those of the negative siRNA group (P < 0.05). In addition, the knockdown of MUSTN1 significantly increased the cell population in the G0/G1 phase and significantly decreased the cell population in the G2/M phase (P < 0.05), whereas the overexpression of MUSTN1 showed opposite effect. Taken together, our findings indicates that MUSTN1 is an important molecular factor that is responsible for regulating muscle growth and development in chickens, particularly, proliferation and differentiation of SMSCs.


LncRNA H19 inhibits ER stress induced apoptosis and improves diabetic cardiomyopathy by regulating PI3K/AKT/mTOR axis.

  • Sixuan Wang‎ et al.
  • Aging‎
  • 2022‎

Extensive studies have shown that ERS may be implicated in the pathogenesis of DCM. We explored the therapeutic effects of lncRNAH19 on DCM and its effect on ERS-associated cardiomyocyte apoptosis.


Cellular-resolution gene expression profiling in the neonatal marmoset brain reveals dynamic species- and region-specific differences.

  • Yoshiaki Kita‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2021‎

Precise spatiotemporal control of gene expression in the developing brain is critical for neural circuit formation, and comprehensive expression mapping in the developing primate brain is crucial to understand brain function in health and disease. Here, we developed an unbiased, automated, large-scale, cellular-resolution in situ hybridization (ISH)-based gene expression profiling system (GePS) and companion analysis to reveal gene expression patterns in the neonatal New World marmoset cortex, thalamus, and striatum that are distinct from those in mice. Gene-ontology analysis of marmoset-specific genes revealed associations with catalytic activity in the visual cortex and neuropsychiatric disorders in the thalamus. Cortically expressed genes with clear area boundaries were used in a three-dimensional cortical surface mapping algorithm to delineate higher-order cortical areas not evident in two-dimensional ISH data. GePS provides a powerful platform to elucidate the molecular mechanisms underlying primate neurobiology and developmental psychiatric and neurological disorders.


Cardiac specific transcription factor Csx/Nkx2.5 regulates transient-outward K+ channel expression in pluripotent P19 cell-derived cardiomyocytes.

  • Tomoko Uchino‎ et al.
  • The journal of physiological sciences : JPS‎
  • 2020‎

The homeobox-containing gene Csx/Nkx2.5 codes several cardiac transcription factors and plays a critical role in early cardiogenesis. We investigated the effect of Csx/Nkx2.5 on the expression of cardiac ion channels using P19-derived cardiomyocytes. P19CL6 cells and P19CL6 cells with Csx/Nkx2.5 overexpression (P19CL6-Csx cells) were induced to differentiate into cardiomyocytes by treatment with dimethyl sulfoxide. Action potentials and membrane currents were measured by whole cell patch clamp at different differentiation stage: the early stage (1-5 days after beating had begun) and the late stage (10-15 days after beating). Expression of Csx/Nkx2.5 mRNA was increased as the differentiation stages advanced in both P19CL6 and P19CL6-Csx cells. In action potential configuration, maximal diastolic potentials in P19CL6-Csx cells exhibited more hyperpolarized potential (‒ 64.2 mV) than those in P19CL6 cells (‒ 54.8 mV, p < 0.01) in the early stage. In P19CL6 cells, among 6 different voltage-gated and ligand-operated K+ channels expressed during the early stage, the transient-outward K+ channel was most predominant. By overexpression of Csx/Nkx2.5, developmental decrease in the transient-outward K+ channel was suppressed. Homeobox-containing gene Csx/Nkx2.5 modifies the amount of distinct ionic channels, during differentiation periods, predominantly changing the expression of the transient-outward K+ channel.


Oxytocin Downregulates the CaV1.2 L-Type Ca2+ Channel via Gi/cAMP/PKA/CREB Signaling Pathway in Cardiomyocytes.

  • Masaki Morishima‎ et al.
  • Membranes‎
  • 2021‎

Oxytocin (OT) and its receptor (OTR) are expressed in the heart and are involved in the physiological cardiovascular functional system. Although it is known that OT/OTR signaling is cardioprotective by reducing the inflammatory response and improving cardiovascular function, the role of OT in the cardiac electrical excitation modulation has not been clarified. This study investigates the molecular mechanism of the action of OT on cardiomyocyte membrane excitation focusing on the L-type Ca2+ channel. Our methodology uses molecular biological methods and a patch-clamp technique on rat cardiomyocytes with OT, combined with several signal inhibitors and/or activators. Our results show that long-term treatment of OT significantly decreases the expression of Cav1.2 mRNA, and reduces the L-type Ca2+ channel current (ICa.L) in cardiomyocytes. OT downregulates the phosphorylated component of a transcription factor adenosine-3',5'-cyclic monophosphate (cAMP) response element binding protein (CREB), whose action is blocked by OTR antagonist and pertussis toxin, a specific inhibitor of the inhibitory GTP-binding regulators of adenylate cyclase, Gi. On the other hand, the upregulation of Cav1.2 mRNA expression by isoproterenol is halted by OT. Furthermore, inhibition of phospholipase C (PLC) was without effect on the OT action to downregulate Cav1.2 mRNA-which suggests a signal pathway of Gi/protein kinase A (PKA)/CREB mediated by OT/OTR. These findings indicate novel signaling pathways of OT contributing to a downregulation of the Cav1.2-L-type Ca2+ channel in cardiomyocytes.


LIM kinase 1 serves an important role in the multidrug resistance of osteosarcoma cells.

  • Jian-Zeng Yang‎ et al.
  • Oncology letters‎
  • 2018‎

Multidrug resistance (MDR) is a major challenge for the management of the majority of cancers. The precise molecular mechanisms of MDR remain elusive. In a previous study, a multidrug resistant osteosarcoma model [MG63/vincristine (VCR)] was established by intermittent exposure of MG63 cells to gradually increasing concentrations of VCR. These cells exhibited cross-resistance to multiple structurally and mechanistically unrelated chemotherapeutic agents. The development of MDR was associated with increased expression of LIM kinase 1 (LIMK1). Compared with that in normal human fetal osteoblasts (hFOB) 1.19, the messenger RNA and protein expression of LIMK1 was significantly elevated both in MG63 and U2OS osteosarcoma cells. To observe the expression pattern of LIMK1 in osteosarcoma, immunohistochemical analyses were performed on specimens derived from 6 patients. The results indicated that LIMK1 was expressed to a greater extent in the tumor parenchyma than in the mesenchyme. The role of LIMK1 in MDR was confirmed by transfecting plasmids coding LIMK1-small interfering RNA (siRNA), wild-type-LIMK1 or empty vector into MG63/VCR cells, and measuring the expression of LIMK1 and multidrug resistance protein 1 (MDR1), also known as P-gycoprotein (P-gp). The results demonstrated that the level of MDR1/P-gp was positively correlated with the level of LIMK1. This correlation was also shown with the doxorubicin efflux assay and by measuring apoptosis. Specifically, after 6 h of incubation with VCR, 25.6% of the cells transfected with the LIMK1-siRNA plasmid were apoptotic compared with 6.2% in the empty vector group and 1.3% in the group of cells transfected with the wild-type-LIMK1 plasmid. Thus, it was concluded that LIMK1 serves a key role in the MDR of osteosarcoma and functions through MDR1.


Association between MYH9 and APOL1 Gene Polymorphisms and the Risk of Diabetic Kidney Disease in Patients with Type 2 Diabetes in a Chinese Han Population.

  • Hailing Zhao‎ et al.
  • Journal of diabetes research‎
  • 2018‎

Single-nucleotide polymorphisms (SNPs) in MYH9-APOL1 gene regions have been reported to be associated with diabetic kidney disease (DKD) in the American population. We examined the association between polymorphisms in MYH9-APOL1 and DKD susceptibility in a Chinese Han population. MYH9 rs3752462 (T>C) and APOL1 rs136161 (C>G) were genotyped in 303 DKD patients and 364 type 2 diabetes mellitus (T2DM) patients without kidney disease using the TaqMan SNP genotyping assay. Chi-squared test and multivariate logistic regression were used to evaluate the association. We observed that only MYH9 rs3752462 was associated with DKD (genotype, P = 0.004; allele, P = 0.002). Genetic model analysis revealed that rs3752462 was associated with increased risk of DKD under a dominant model adjusted by age and sex (adjusted odds ratio (aOR), 1.675; 95% CI 1.225-2.289; P = 0.001) and an additive model (TC versus TT: aOR, 1.649; 95% CI 1.187-2.290; CC versus TT: aOR, 1.817; 95% CI 0.980-3.367; P = 0.005). The combined effect of rs3752462 TC + rs136161 CC genotype showed an association of DKD adjusted by age and sex (aOR, 1.732; 95% CI 1.128-2.660; P = 0.012). After a Holm-Bonferroni correction for multiple tests, the C allele frequencies of the rs3752462 and the TC + CC genotype in the dominant model were considered statistically significant with a markedly increased risk of DKD (P < 0.00208; P < 0.002). Our results suggest that MYH9 rs3752462 is significantly associated with an increased risk of DKD in Chinese Han individuals.


The complete mitochondrial genome of Huananpotamon lichuanense (Decapoda: Brachyura) with phylogenetic implications for freshwater crabs.

  • Jun Bai‎ et al.
  • Gene‎
  • 2018‎

In the present study, we determined the complete mitochondrial genome of Huananpotamon lichuanense (Decapoda: Brachyura) for the first time. The genome is 15,380bp in length and typically consists of 37 genes. When the gene order was compared to the ancestral crustacean type, two tRNA genes (tRNAHis and tRNAGln) were rearranged in H. lichuanense, and the translocation of tRNAGln appeared only in Potamoidea crabs, such as Geothelphusa dehaani and Sinopotamon xiushuiense, supporting the monophyly of the Potamoidea superfamily. Thirteen protein-coding genes and 2 rRNA genes were divided into five complexes to perform the phylogenetic analysis, and the results showed that the trees constructed by complex I (ND1-ND6 and ND4L), complex IV (COX1-COX3) and rRNA genes better accord with the morphological classification system, suggesting that molecular markers of higher-level phylogeny can be developed in these three complexes in the future. The estimated divergence time for freshwater crabs is approximately 133.58Ma, and G. dehaani from Japan diverged from the freshwater crabs of mainland China approximately 60.66Ma. A selective pressure analysis based on current data revealed obviously increasing dN/dS ratios (except for ATP6 and ND4L) of freshwater crabs, and the accumulation of nonsynonymous mutations suggests that terrestrial habitats provide a relatively relaxed selective pressure environment for this group.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: