Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 332 papers

Brain/MINDS: brain-mapping project in Japan.

  • Hideyuki Okano‎ et al.
  • Philosophical transactions of the Royal Society of London. Series B, Biological sciences‎
  • 2015‎

There is an emerging interest in brain-mapping projects in countries across the world, including the USA, Europe, Australia and China. In 2014, Japan started a brain-mapping project called Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS). Brain/MINDS aims to map the structure and function of neuronal circuits to ultimately understand the vast complexity of the human brain, and takes advantage of a unique non-human primate animal model, the common marmoset (Callithrix jacchus). In Brain/MINDS, the RIKEN Brain Science Institute acts as a central institute. The objectives of Brain/MINDS can be categorized into the following three major subject areas: (i) structure and functional mapping of a non-human primate brain (the marmoset brain); (ii) development of innovative neurotechnologies for brain mapping; and (iii) human brain mapping; and clinical research. Brain/MINDS researchers are highly motivated to identify the neuronal circuits responsible for the phenotype of neurological and psychiatric disorders, and to understand the development of these devastating disorders through the integration of these three subject areas.


Protein profiling of extracellular vesicles from iPSC-derived astrocytes of patients with ALS/PDC in Kii peninsula.

  • Hiroya Kobayashi‎ et al.
  • Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology‎
  • 2023‎

Amyotrophic lateral sclerosis/Parkinsonism-dementia complex in Kii peninsula, Japan (Kii ALS/PDC), is an endemic neurodegenerative disease whose causes and pathogenesis remain unknown. However, astrocytes in autopsied cases of Kii ALS/PDC show characteristic lesions. In addition, relationships between extracellular vesicles (EVs) and neurodegenerative diseases are increasingly apparent. Therefore, we focused on proteins in EVs derived from Kii ALS/PDC astrocytes in the present study.


Brain/MINDS: A Japanese National Brain Project for Marmoset Neuroscience.

  • Hideyuki Okano‎ et al.
  • Neuron‎
  • 2016‎

Brain/MINDS (Brain Mapping by Integrated Neurotechnologies for Disease Studies) is a national brain project started by Japan in 2014. With the goal of developing the common marmoset as a model animal for neuroscience, the project aims to build a multiscale marmoset brain map, develop new technologies for experimentalists, create transgenic lines for brain disease modeling, and integrate translational findings from the clinical biomarker landscape. Brain/MINDS will collaborate with global brain projects to share technologies and resources.


Control of directionality of chromatin folding for the inter- and intra-domain contacts at the Tfap2c-Bmp7 locus.

  • Taro Tsujimura‎ et al.
  • Epigenetics & chromatin‎
  • 2018‎

Contact domains of chromatin serve as a fundamental unit to regulate action of enhancers for target genes. Looping between a pair of CCCTC-binding factor (CTCF)-binding sites in convergent orientations underlies the formation of contact domains, while those in divergent orientations establish domain boundaries. However, every CTCF site is not necessarily engaged in loop or boundary structures, leaving functions of CTCF in varied genomic contexts still elusive. The locus containing Tfap2c and Bmp7 encompasses two contact domains separated by a region between the two genes, termed transition zone (TZ), characterized by two arrays of CTCF sites in divergent configuration. In this study, we created deletion and inversion alleles of these and other regions across the locus and investigated how they impinge on the conformation.


Single transcription factor efficiently leads human induced pluripotent stem cells to functional microglia.

  • Iki Sonn‎ et al.
  • Inflammation and regeneration‎
  • 2022‎

Microglia are innate immune cells that are the only residential macrophages in the central nervous system. They play vital physiological roles in the adult brain and during development. Microglia are particularly in the spotlight because many genetic risk factors recently identified for neurodegenerative diseases are largely expressed in microglia. Rare polymorphisms in these risk alleles lead to abnormal activity of microglia under traumatic or disease conditions.


Long Preservation of AAV-Transduced Fluorescence by a Modified Organic Solvent-Based Clearing Method.

  • Tao Lu‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

The development of tissue clearing technologies allows 3D imaging of whole tissues and organs, especially in studies of the central nervous system innervated throughout the body. Although the three-dimensional imaging of solvent-cleared organs (3DISCO) method provides a powerful clearing capacity and high transparency, the rapid quenching of endogenous fluorescence and peroxide removal process decreases its practicability. This study provides a modified method named tDISCO to solve these limitations. The tDISCO protocol can preserve AAV-transduced endogenous EGFP fluorescence for months and achieve high transparency in a fast and simple clearing process. In addition to the brain, tDISCO was applied to other organs and even hard bone tissue. tDISCO also enabled us to visualize the long projection neurons and axons with high resolution. This method provides a fast and simple clearing protocol for 3D visualization of the AAV- transduced long projection neurons throughout the brain and spinal cord.


Controlling gene activation by enhancers through a drug-inducible topological insulator.

  • Taro Tsujimura‎ et al.
  • eLife‎
  • 2020‎

While regulation of gene-enhancer interaction is intensively studied, its application remains limited. Here, we reconstituted arrays of CTCF-binding sites and devised a synthetic topological insulator with tetO for chromatin-engineering (STITCH). By coupling STITCH with tetR linked to the KRAB domain to induce heterochromatin and disable the insulation, we developed a drug-inducible system to control gene activation by enhancers. In human induced pluripotent stem cells, STITCH inserted between MYC and the enhancer down-regulated MYC. Progressive mutagenesis of STITCH led to a preferential escalation of the gene-enhancer interaction, corroborating the strong insulation ability of STITCH. STITCH also altered epigenetic states around MYC. Time-course analysis by drug induction uncovered deposition and removal of H3K27me3 repressive marks follows and reflects, but does not precede and determine, the expression change. Finally, STITCH inserted near NEUROG2 impaired the gene activation in differentiating neural progenitor cells. Thus, STITCH should be broadly useful for functional genetic studies.


Hepatocyte growth factor pretreatment boosts functional recovery after spinal cord injury through human iPSC-derived neural stem/progenitor cell transplantation.

  • Yu Suematsu‎ et al.
  • Inflammation and regeneration‎
  • 2023‎

Human induced pluripotent stem cell-derived neural stem/progenitor cell (hiPSC-NS/PC)-based cell transplantation has emerged as a groundbreaking method for replacing damaged neural cells and stimulating functional recovery, but its efficacy is strongly influenced by the state of the injured spinal microenvironment. This study evaluates the impact of a dual therapeutic intervention utilizing hepatocyte growth factor (HGF) and hiPSC-NS/PC transplantation on motor function restoration following spinal cord injury (SCI).


Rehabilitative Training Enhances Therapeutic Effect of Human-iPSC-Derived Neural Stem/Progenitor Cells Transplantation in Chronic Spinal Cord Injury.

  • Takahiro Shibata‎ et al.
  • Stem cells translational medicine‎
  • 2023‎

Cell transplantation therapy using human-induced pluripotent stem cell-derived neural stem/progenitor cells (hiPSC-NS/PCs) is a new therapeutic strategy for spinal cord injury (SCI). Preclinical studies have demonstrated the efficacy of hiPSC-NS/PCs transplantation in the subacute phase of SCI. However, locomotor recovery secondary to hiPSC-NS/PCs transplantation is limited in the chronic phase, suggesting that additional treatment, including rehabilitative training, is required to ensure recovery. The therapeutic potential of hiPSC-NS/PCs that qualify for clinical application is yet to be fully delineated. Therefore, in this study, we investigated the therapeutic effect of the combined therapy of clinical-grade hiPSC-NS/PCs transplantation and rehabilitative training that could produce synergistic effects in a rodent model of chronic SCI. Our findings indicated that rehabilitative training promoted the survival rate and neuronal differentiation of transplanted hiPSC-NS/PCs. The combination therapy was able to enhance the expressions of the BDNF and NT-3 proteins in the spinal cord tissue. Moreover, rehabilitation promoted neuronal activity and increased 5-HT-positive fibers at the lumbar enlargement. Consequently, the combination therapy significantly improved motor functions. The findings of this study suggest that the combined therapy of hiPSC-NS/PCs transplantation and rehabilitative training has the potential to promote functional recovery even when initiated during chronic SCI.


Current progress of rehabilitative strategies in stem cell therapy for spinal cord injury: a review.

  • Syoichi Tashiro‎ et al.
  • NPJ Regenerative medicine‎
  • 2021‎

Stem cell-based regenerative therapy has opened an avenue for functional recovery of patients with spinal cord injury (SCI). Regenerative rehabilitation is attracting wide attention owing to its synergistic effects, feasibility, non-invasiveness, and diverse and systemic properties. In this review article, we summarize the features of rehabilitation, describe the mechanism of combinatorial treatment, and discuss regenerative rehabilitation in the context of SCI. Although conventional rehabilitative methods have commonly been implemented alone, especially in studies of acute-to-subacute SCI, the combinatorial effects of intensive and advanced methods, including various neurorehabilitative approaches, have also been reported. Separating the concept of combined rehabilitation from regenerative rehabilitation, we suggest that the main roles of regenerative rehabilitation can be categorized as conditioning/reconditioning, functional training, and physical exercise, all of which are indispensable for enhancing functional recovery achieved using stem cell therapies.


Excess hydrogen sulfide and polysulfides production underlies a schizophrenia pathophysiology.

  • Masayuki Ide‎ et al.
  • EMBO molecular medicine‎
  • 2019‎

Mice with the C3H background show greater behavioral propensity for schizophrenia, including lower prepulse inhibition (PPI), than C57BL/6 (B6) mice. To characterize as-yet-unknown pathophysiologies of schizophrenia, we undertook proteomics analysis of the brain in these strains, and detected elevated levels of Mpst, a hydrogen sulfide (H2 S)/polysulfide-producing enzyme, and greater sulfide deposition in C3H than B6 mice. Mpst-deficient mice exhibited improved PPI with reduced storage sulfide levels, while Mpst-transgenic (Tg) mice showed deteriorated PPI, suggesting that "sulfide stress" may be linked to PPI impairment. Analysis of human samples demonstrated that the H2 S/polysulfides production system is upregulated in schizophrenia. Mechanistically, the Mpst-Tg brain revealed dampened energy metabolism, while maternal immune activation model mice showed upregulation of genes for H2 S/polysulfides production along with typical antioxidative genes, partly via epigenetic modifications. These results suggest that inflammatory/oxidative insults in early brain development result in upregulated H2 S/polysulfides production as an antioxidative response, which in turn cause deficits in bioenergetic processes. Collectively, this study presents a novel aspect of the neurodevelopmental theory for schizophrenia, unraveling a role of excess H2 S/polysulfides production.


Granulocyte macrophage colony-stimulating factor-induced macrophages of individuals with autism spectrum disorder adversely affect neuronal dendrites through the secretion of pro-inflammatory cytokines.

  • Ryohei Takada‎ et al.
  • Molecular autism‎
  • 2024‎

A growing body of evidence suggests that immune dysfunction and inflammation in the peripheral tissues as well as the central nervous system are associated with the neurodevelopmental deficits observed in autism spectrum disorder (ASD). Elevated expression of pro-inflammatory cytokines in the plasma, serum, and peripheral blood mononuclear cells of ASD has been reported. These cytokine expression levels are associated with the severity of behavioral impairments and symptoms in ASD. In a prior study, our group reported that tumor necrosis factor-α (TNF-α) expression in granulocyte-macrophage colony-stimulating factor-induced macrophages (GM-CSF MΦ) and the TNF-α expression ratio in GM-CSF MΦ/M-CSF MΦ (macrophage colony-stimulating factor-induced macrophages) was markedly higher in individuals with ASD than in typically developed (TD) individuals. However, the mechanisms of how the macrophages and the highly expressed cytokines affect neurons remain to be addressed.


Schwann-spheres derived from injured peripheral nerves in adult mice--their in vitro characterization and therapeutic potential.

  • Takehiko Takagi‎ et al.
  • PloS one‎
  • 2011‎

Multipotent somatic stem cells have been identified in various adult tissues. However, the stem/progenitor cells of the peripheral nerves have been isolated only from fetal tissues. Here, we isolated Schwann-cell precursors/immature Schwann cells from the injured peripheral nerves of adult mice using a floating culture technique that we call "Schwann-spheres." The Schwann-spheres were derived from de-differentiated mature Schwann cells harvested 24 hours to 6 weeks after peripheral nerve injury. They had extensive self-renewal and differentiation capabilities. They strongly expressed the immature-Schwann-cell marker p75, and differentiated only into the Schwann-cell lineage. The spheres showed enhanced myelin formation and neurite growth compared to mature Schwann cells in vitro. Mature Schwann cells have been considered a promising candidate for cell-transplantation therapies to repair the damaged nervous system, whereas these "Schwann-spheres" would provide a more potential autologous cell source for such transplantation.


Subarachnoid hemorrhage triggers neuroinflammation of the entire cerebral cortex, leading to neuronal cell death.

  • Hiroki Yamada‎ et al.
  • Inflammation and regeneration‎
  • 2022‎

Subarachnoid hemorrhage (SAH) is a fatal disease, with early brain injury (EBI) occurring within 72 h of SAH injury contributes to its poor prognosis. EBI is a complicated phenomenon involving multiple mechanisms. Although neuroinflammation has been shown to be important prognosis factor of EBI, whether neuroinflammation spreads throughout the cerebrum and the extent of its depth in the cerebral cortex remain unknown. Knowing how inflammation spreads throughout the cerebrum is also important to determine if anti-inflammatory agents are a future therapeutic strategy for EBI.


Novel artificial nerve transplantation of human iPSC-derived neurite bundles enhanced nerve regeneration after peripheral nerve injury.

  • Takayuki Nishijima‎ et al.
  • Inflammation and regeneration‎
  • 2024‎

Severe peripheral nerve damage always requires surgical treatment. Autologous nerve transplantation is a standard treatment, but it is not sufficient due to length limitations and extended surgical time. Even with the available artificial nerves, there is still large room for improvement in their therapeutic effects. Novel treatments for peripheral nerve injury are greatly expected.


Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc.

  • Daisuke Sakai‎ et al.
  • Nature communications‎
  • 2012‎

Despite the high prevalence of intervertebral disc disease, little is known about changes in intervertebral disc cells and their regenerative potential with ageing and intervertebral disc degeneration. Here we identify populations of progenitor cells that are Tie2 positive (Tie2+) and disialoganglioside 2 positive (GD2+), in the nucleus pulposus from mice and humans. These cells form spheroid colonies that express type II collagen and aggrecan. They are clonally multipotent and differentiated into mesenchymal lineages and induced reorganization of nucleus pulposus tissue when transplanted into non-obese diabetic/severe combined immunodeficient mice. The frequency of Tie2+ cells in tissues from patients decreases markedly with age and degeneration of the intervertebral disc, suggesting exhaustion of their capacity for regeneration. However, progenitor cells (Tie2+GD2+) can be induced from their precursor cells (Tie2+GD2-) under simple culture conditions. Moreover, angiopoietin-1, a ligand of Tie2, is crucial for the survival of nucleus pulposus cells. Our results offer insights for regenerative therapy and a new diagnostic standard.


Down-regulation of ghrelin receptors on dopaminergic neurons in the substantia nigra contributes to Parkinson's disease-like motor dysfunction.

  • Yukari Suda‎ et al.
  • Molecular brain‎
  • 2018‎

Ghrelin exerts a wide range of physiological actions throughout the body and appears to be a promising target for disease therapy. Endogenous ghrelin receptors (GHSRs) are present in extrahypothalamic sites including the substantia nigra pars compacta (SNc), which is related to phenotypic dysregulation or frank degeneration in Parkinson's disease (PD). Here we found a dramatic decrease in the expression of GHSR in PD-specific induced pluripotent stem cell (iPSC)-derived dopaminergic (DAnergic) neurons generated from patients carrying parkin gene (PARK2) mutations compared to those from healthy controls. Consistently, a significant decrease in the expression of GHSR was found in DAnergic neurons of isogenic PARK2-iPSC lines that mimicked loss of function of the PARK2 gene through CRISPR Cas9 technology. Furthermore, either intracerebroventricular injection or microinjection into the SNc of the selective GHSR1a antagonist [D-Lys3]-GHRP6 in normal mice produced cataleptic behaviors related to dysfunction of motor coordination. These findings suggest that the down-regulation of GHSRs in SNc-DA neurons induced the initial dysfunction of DA neurons, leading to extrapyramidal disorder under PD.


Static magnetic field effects on impaired peripheral vasomotion in conscious rats.

  • Shenzhi Xu‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2013‎

We investigated the SMF effects on hemodynamics in the caudal artery-ligated rat as an in vivo ischemia model using noninvasive near-infrared spectroscopy (NIRS) combined with power spectral analysis by fast Fourier transform. Male Wistar rats in the growth stage (10 weeks old) were randomly assigned into four groups: (i) intact and nonoperated cage control (n = 20); (ii) ligated alone (n = 20); (iii) ligated and implanted with a nonmagnetized rod (sham magnet; n = 22); and (vi) ligated and implanted with a magnetized rod (n = 22). After caudal artery ligation, a magnetized or unmagnetized rod (maximum magnetic flux density of 160 mT) was implanted transcortically into the middle diaphysis of the fifth caudal vertebra. During the experimental period of 7 weeks, NIRS measurements were performed in 3- , 5- , and 7-week sessions and the vasomotion amplitude and frequency were analyzed by fast Fourier transform. Exposure for 3-7 weeks to the SMF significantly contracted the increased vasomotion amplitude in the ischemic area. These results suggest that SMF may have a regulatory effect on rhythmic vasomotion in the ischemic area by smoothing the vasomotion amplitude in the early stage of the wound healing process.


Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow.

  • Satoru Morikawa‎ et al.
  • The Journal of experimental medicine‎
  • 2009‎

Mesenchymal stem cells (MSCs) are defined as cells that undergo sustained in vitro growth and can give rise to multiple mesenchymal lineages. Because MSCs have only been isolated from tissue in culture, the equivalent cells have not been identified in vivo and little is known about their physiological roles or even their exact tissue location. In this study, we used phenotypic, morphological, and functional criteria to identify and prospectively isolate a subset of MSCs (PDGFRalpha+Sca-1+CD45-TER119-) from adult mouse bone marrow. Individual MSCs generated colonies at a high frequency and could differentiate into hematopoietic niche cells, osteoblasts, and adipocytes after in vivo transplantation. Naive MSCs resided in the perivascular region in a quiescent state. This study provides the useful method needed to identify MSCs as defined in vivo entities.


Distinct roles of amylin and oxytocin signaling in intrafamilial social behaviors at the medial preoptic area of common marmosets.

  • Takuma Kurachi‎ et al.
  • Communications biology‎
  • 2023‎

Calcitonin receptor (Calcr) and its brain ligand amylin in the medial preoptic area (MPOA) are found to be critically involved in infant care and social contact behaviors in mice. In primates, however, the evidence is limited to an excitotoxic lesion study of the Calcr-expressing MPOA subregion (cMPOA) in a family-living primate species, the common marmoset. The present study utilized pharmacological manipulations of the cMPOA and shows that reversible inactivation of the cMPOA abolishes infant-care behaviors in sibling marmosets without affecting other social or non-social behaviors. Amylin-expressing neurons in the marmoset MPOA are distributed in the vicinity of oxytocin neurons in the anterior paraventricular nucleus of the hypothalamus. While amylin infusion facilitates infant carrying selectively, an oxytocin's inverse agonist, atosiban, reduces physical contact with non-infant family members without grossly affecting infant care. These data suggest that the amylin and oxytocin signaling mediate intrafamilial social interactions in a complementary manner in marmosets.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: