Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

Isocitrate dehydrogenase 1 (IDH1) mutation-specific microRNA signature predicts favorable prognosis in glioblastoma patients with IDH1 wild type.

  • Zheng Wang‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2013‎

To date, no prognostic microRNAs (miRNAs) for isocitrate dehydrogenase 1 (IDH1) wild-type glioblastoma multiformes (GBM) have been reported. The aim of the present study was to identify a miRNA signature of prognostic value for IDH1 wild-type GBM patients using miRNA expression dataset from the The Cancer Genome Atlas (TCGA).


Distinct clinical and prognostic implication of IDH1/2 mutation and other most frequent mutations in large duct and small duct subtypes of intrahepatic cholangiocarcinoma.

  • Bingqi Ma‎ et al.
  • BMC cancer‎
  • 2020‎

Isocitrate dehydrogenase 1/2 (IDH1/2), BAP1, ARID1A and PBRM1 have been reported as the most frequent mutant genes in intrahepatic cholangiocarcinoma (ICC), and their relationships with clinicopathological features and prognosis were researched in this study.


Immunological profiles of human oligodendrogliomas define two distinct molecular subtypes.

  • Fan Wu‎ et al.
  • EBioMedicine‎
  • 2023‎

Human oligodendroglioma presents as a heterogeneous disease, primarily characterized by the isocitrate dehydrogenase (IDH) mutation and 1p/19q co-deletion. Therapy development for this tumor is hindered by incomplete knowledge of somatic driving alterations and suboptimal disease classification. We herein aim to identify intrinsic molecular subtypes through integrated analysis of transcriptome, genome and methylome.


Protein Kinase B (PKB/AKT) Protects IDH-Mutated Glioma from Ferroptosis via Nrf2.

  • Yang Liu‎ et al.
  • Clinical cancer research : an official journal of the American Association for Cancer Research‎
  • 2023‎

Mutations of the isocitrate dehydrogenase (IDH) gene are common genetic mutations in human malignancies. Increasing evidence indicates that IDH mutations play critical roles in malignant transformation and progression. However, the therapeutic options for IDH-mutated cancers remain limited. In this study, the investigation of patient cohorts revealed that the PI3K/protein kinase B (AKT) signaling pathways were enhanced in IDH-mutated cancer cells.


Stalled oligodendrocyte differentiation in IDH-mutant gliomas.

  • Yanfei Wei‎ et al.
  • Genome medicine‎
  • 2023‎

Roughly 50% of adult gliomas harbor isocitrate dehydrogenase (IDH) mutations. According to the 2021 WHO classification guideline, these gliomas are diagnosed as astrocytomas, harboring no 1p19q co-deletion, or oligodendrogliomas, harboring 1p19q co-deletion. Recent studies report that IDH-mutant gliomas share a common developmental hierarchy. However, the neural lineages and differentiation stages in IDH-mutant gliomas remain inadequately characterized.


Autocrine BMP4 Signaling Enhances Tumor Aggressiveness via Promoting Wnt/β-Catenin Signaling in IDH1-mutant Gliomas.

  • Yiqiang Zhou‎ et al.
  • Translational oncology‎
  • 2020‎

The isocitrate dehydrogenase (IDH1/2) mutations are frequent genetic abnormalities in the majority of WHO grade II/III glioma and secondary GBM. IDH1-mutated (IDH1Mut) glioma exhibits distinctive patterns in cancer biology and metabolism. In the present study, we showed that bone morphogenetic proteins (BMP4) are significantly upregulated in IDH1Mut glioma. Further, we demonstrated that cancer-associated BMP4 is secreted to tumor microenvironment, which enhances the tumor migration and invasion through an autocrine manner. Mechanistically, BMP4 activates its receptor and concomitant SMAD1/5/8 signaling, which potentiates Wnt/β-catenin signaling by enhancing Frizzled receptor expression. LDN-193189, a selective BMP receptor inhibitor, prolonged the overall survival of mice bearing IDH1-mutated intracranial xenografts by limiting BMP/catenin signaling. These findings demonstrate the pivotal role of BMP4 on tumor aggressiveness in IDH1Mut gliomas, suggesting a possible therapeutic strategy for this type of malignancy.


Natural Coevolution of Tumor and Immunoenvironment in Glioblastoma.

  • Lingxiang Wu‎ et al.
  • Cancer discovery‎
  • 2022‎

Isocitrate dehydrogenase (IDH) wild-type glioblastoma (GBM) has a dismal prognosis. A better understanding of tumor evolution holds the key to developing more effective treatment. Here we study GBM's natural evolutionary trajectory by using rare multifocal samples. We sequenced 61,062 single cells from eight multifocal IDH wild-type primary GBMs and defined a natural evolution signature (NES) of the tumor. We show that the NES significantly associates with the activation of transcription factors that regulate brain development, including MYBL2 and FOSL2. Hypoxia is involved in inducing NES transition potentially via activation of the HIF1A-FOSL2 axis. High-NES tumor cells could recruit and polarize bone marrow-derived macrophages through activation of the FOSL2-ANXA1-FPR1/3 axis. These polarized macrophages can efficiently suppress T-cell activity and accelerate NES transition in tumor cells. Moreover, the polarized macrophages could upregulate CCL2 to induce tumor cell migration.


Functional and Integrative Analysis of the Proteomic Profile of Radish Root under Pb Exposure.

  • Yan Wang‎ et al.
  • Frontiers in plant science‎
  • 2016‎

Lead (Pb) is one of the most abundant heavy metal (HM) pollutants, which can penetrate the plant through the root and then enter the food chain causing potential health risks for human beings. Radish is an important root vegetable crop worldwide. To investigate the mechanism underlying plant response to Pb stress in radish, the protein profile changes of radish roots respectively upon Pb(NO3)2 at 500 mg L-1(Pb500) and 1000 mg L-1(Pb1000), were comprehensively analyzed using iTRAQ (Isobaric Tag for Relative and Absolute Quantification). A total of 3898 protein species were successfully detected and 2141 were quantified. Among them, a subset of 721 protein species were differentially accumulated upon at least one Pb treatment, and 135 ones showed significantly abundance changes under both two Pb-stressed conditions. Many critical protein species related to protein translation, processing, and degradation, reactive oxygen species (ROS) scavenging, photosynthesis, and respiration and carbon metabolism were successfully identified. Gene Ontology (GO) and pathway enrichment analysis of the 135 differential abundance protein species (DAPS) revealed that the overrepresented GO terms included "cell wall," "apoplast," "response to metal ion," "vacuole," and "peroxidase activity," and the critical enriched pathways were involved in "citric acid (TCA) cycle and respiratory electron transport," "pyruvate metabolism," "phenylalanine metabolism," "phenylpropanoid biosynthesis," and "carbon metabolism." Furthermore, the integrative analysis of transcriptomic, miRNA, degradome, metabolomics and proteomic data provided a strengthened understanding of radish response to Pb stress at multiple levels. Under Pb stress, many key enzymes (i.e., ATP citrate lyase, Isocitrate dehydrogenase, fumarate hydratase and malate dehydrogenase) involved in the glycolysis and TCA cycle were severely affected, which ultimately cause alteration of some metabolites including glucose, citrate and malate. Meanwhile, a series of other defense responses including ascorbate (ASA)-glutathione (GSH) cycle for ROS scavenging and Pb-defense protein species (glutaredoxin, aldose 1-epimerase malate dehydrogenase and thioredoxin), were triggered to cope with Pb-induced injuries. These results would be helpful for further dissecting molecular mechanism underlying plant response to HM stresses, and facilitate effective management of HM contamination in vegetable crops by genetic manipulation.


The expression of ASAP3 and NOTCH3 and the clinicopathological characteristics of adult glioma patients.

  • Li-Ping Su‎ et al.
  • Open medicine (Warsaw, Poland)‎
  • 2022‎

ASAP3 is involved in a variety of biological activities, including cancer progression in humans. In adult glioma, we explore the effects of ASAP3 and NOTCH3 and their relationships on prognosis. The Oncomine, TIMER, and Gene Expression Profiling Interactive Analysis databases were used to investigate ASAP3 expression. Immunohistochemistry was used to assess the levels of ASAP3 and NOTCH3 expressions. The effects of ASAP3 and NOTCH3 on prognosis were assessed using survival analysis. The results revealed that the amount of ASAP3 mRNA in gliomas was much higher than in normal tissue (P < 0.01). Glioma patients with high ASAP3 mRNA expression had a worse overall survival and progression-free survival. ASAP3 overexpression is directly associated with the NOTCH signaling system. Immunohistochemistry revealed that ASAP3 and NOTCH3 were overexpressed in glioblastomas (GBMs). ASAP3 expression was associated with age, recurrence, tumor resection, postoperative chemoradiotherapy, World Health Organization (WHO) grade, and Ki-67 expression. ASAP3 expression was related to the isocitrate dehydrogenase-1 mutation in low-grade glioma. Gender, local recurrence, tumor resection, postoperative radio-chemotherapy, WHO grade, recurrence, and ATRX expression were all associated with NOTCH3 expression. ASAP3 was shown to be positively associated with NOTCH3 (r = 0.337, P = 0.000). Therefore, ASAP3 and NOTCH3 as oncogene factors have the potential to be prognostic biomarkers and therapeutic targets in adult glioma.


Detection of Metabolic Changes Induced via Drug Treatments in Live Cancer Cells and Tissue Using Raman Imaging Microscopy.

  • Mioara Larion‎ et al.
  • Biosensors‎
  • 2018‎

Isocitrate dehydrogenase 1 (IDH1) mutations in gliomas, fibrosarcoma, and other cancers leads to a novel metabolite, D-2-hydroxyglutarate, which is proposed to cause tumorigenesis. The production of this metabolite also causes vulnerabilities in cellular metabolism, such as lowering NADPH levels. To exploit this vulnerability, we treated glioma and fibrosarcoma cells that harbor an IDH1 mutation with an inhibitor of nicotinamide adenine dinucleotide (NAD⁺) salvage pathway, FK866, and observed decreased viability in these cells. To understand the mechanism of action by which the inhibitor FK866 works, we used Raman imaging microscopy and identified that proteins and lipids are decreased upon treatment with the drug. Raman imaging showed a different distribution of lipids throughout the cell in the presence of the drug compared with the untreated cells. We employed nuclear magnetic resonance NMR spectroscopy and mass spectrometry to identify the classes of lipids altered. Our combined analyses point to a decrease in cell division due to loss of lipid content that contributes to membrane formation in the in vitro setting. However, the FK866 drug did not have the same potency in vivo. The use of Raman imaging microscopy indicated an opposite trend of lipid distribution in the tissue collected from treated versus untreated mice when compared with the cells. These results demonstrate the role of Raman imaging microscopy to identify and quantify metabolic changes in cancer cells and tissue.


RNA-seq of 272 gliomas revealed a novel, recurrent PTPRZ1-MET fusion transcript in secondary glioblastomas.

  • Zhao-Shi Bao‎ et al.
  • Genome research‎
  • 2014‎

Studies of gene rearrangements and the consequent oncogenic fusion proteins have laid the foundation for targeted cancer therapy. To identify oncogenic fusions associated with glioma progression, we catalogued fusion transcripts by RNA-seq of 272 gliomas. Fusion transcripts were more frequently found in high-grade gliomas, in the classical subtype of gliomas, and in gliomas treated with radiation/temozolomide. Sixty-seven in-frame fusion transcripts were identified, including three recurrent fusion transcripts: FGFR3-TACC3, RNF213-SLC26A11, and PTPRZ1-MET (ZM). Interestingly, the ZM fusion was found only in grade III astrocytomas (1/13; 7.7%) or secondary GBMs (sGBMs, 3/20; 15.0%). In an independent cohort of sGBMs, the ZM fusion was found in three of 20 (15%) specimens. Genomic analysis revealed that the fusion arose from translocation events involving introns 3 or 8 of PTPRZ and intron 1 of MET. ZM fusion transcripts were found in GBMs irrespective of isocitrate dehydrogenase 1 (IDH1) mutation status. sGBMs harboring ZM fusion showed higher expression of genes required for PIK3CA signaling and lowered expression of genes that suppressed RB1 or TP53 function. Expression of the ZM fusion was mutually exclusive with EGFR overexpression in sGBMs. Exogenous expression of the ZM fusion in the U87MG glioblastoma line enhanced cell migration and invasion. Clinically, patients afflicted with ZM fusion harboring glioblastomas survived poorly relative to those afflicted with non-ZM-harboring sGBMs (P < 0.001). Our study profiles the shifting RNA landscape of gliomas during progression and reveled ZM as a novel, recurrent fusion transcript in sGBMs.


New-Onset Postoperative Seizures in Patients With Diffuse Gliomas: A Risk Assessment Analysis.

  • Lianwang Li‎ et al.
  • Frontiers in neurology‎
  • 2021‎

Background: Glioma-related epilepsy (GRE) is the most common presenting sign of patients with diffuse glioma. According to clinical experience, new-onset postoperative seizures can be observed even in patients without preoperative GRE. The current study mainly aimed to explore the risk factors of new-onset postoperative seizures in those patients. In addition, the prognostic value of new-onset postoperative seizures was also discussed. Methods: Data of 313 patients without GRE were retrospectively reviewed. Chi-square test or Fisher's exact test were first performed to compare categorical variables between patients with new-onset postoperative seizures and those without. Subsequently, binary logistic regression analysis was conduct to further assess risk factors of new-onset postoperative seizures. Kaplan-Meier and Cox analysis were used to investigate the prognostic value of new-onset postoperative seizures for progression-free survival (PFS) and overall survival (OS). Results: Patients with low-grade tumors (p = 0.006), isocitrate dehydrogenase 1 (IDH1) mutation (p = 0.040) or low Ki-67 expression (p = 0.005) showed a higher incidence of new-onset postoperative seizures. IDH1 mutation was identified as the only independent predictor for new-onset postoperative seizures (OR, 2.075; 95% CI, 1.051-4.098; p = 0.035). Additionally, new-onset postoperative seizure occurrence was demonstrated as an independent predicter of prolonged OS (OR, 0.574; 95% CI, 0.335-0.983; p = 0.043), while younger age, gross total resection, low-grade and IDH1 mutation were independently correlated with prolonged OS and PFS. Conclusions: IDH1 mutation is an independent predictor for new-onset postoperative seizures in patients without preoperative GRE. Moreover, new-onset postoperative seizures can independently predict prolonged OS in those patients. The results of the current study can contribute to improving the individualized management of diffuse glioma.


Identification of high risk anaplastic gliomas by a diagnostic and prognostic signature derived from mRNA expression profiling.

  • Chuan-Bao Zhang‎ et al.
  • Oncotarget‎
  • 2015‎

Anaplastic gliomas are characterized by variable clinical and genetic features, but there are few studies focusing on the substratification of anaplastic gliomas. To identify a more objective and applicable classification of anaplastic gliomas, we analyzed whole genome mRNA expression profiling of four independent datasets. Univariate Cox regression, linear risk score formula and receiver operating characteristic (ROC) curve were applied to derive a gene signature with best prognostic performance. The corresponding clinical and molecular information were further analyzed for interpretation of the different prognosis and the independence of the signature. Gene ontology (GO), Gene Set Variation Analysis (GSVA) and Gene Set Enrichment Analysis (GSEA) were performed for functional annotation of the differences. We found a three-gene signature, by applying which, the anaplastic gliomas could be divided into low risk and high risk groups. The two groups showed a high concordance with grade II and grade IV gliomas, respectively. The high risk group was more aggressive and complex. The three-gene signature showed diagnostic and prognostic value in anaplastic gliomas.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: