Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Role of Endogenous Opioid System in Ischemic-Induced Late Preconditioning.

  • Jan Fraessdorf‎ et al.
  • PloS one‎
  • 2015‎

Opioid receptors (OR) are involved in myocardial late preconditioning (LPC) induced by morphine and δ1-opioid receptor (δ1-OR) agonists. The role of OR in ischemic-induced LPC is unknown. We investigated whether 1) OR are involved in the trigger and/or mediation phase of LPC and 2) a time course effect on the expression of different opioid receptors and their endogenous ligands exists.


Plasma from human volunteers subjected to remote ischemic preconditioning protects human endothelial cells from hypoxia-induced cell damage.

  • Nina C Weber‎ et al.
  • Basic research in cardiology‎
  • 2015‎

Short repeated cycles of peripheral ischemia/reperfusion (I/R) can protect distant organs from subsequent prolonged I/R injury; a phenomenon known as remote ischemic preconditioning (RIPC). A RIPC-mediated release of humoral factors might play a key role in this protection and vascular endothelial cells are potential targets for these secreted factors. In the present study, RIPC-plasma obtained from healthy male volunteers was tested for its ability to protect human umbilical endothelial cells (HUVEC) from hypoxia-induced cell damage. 10 healthy male volunteers were subjected to a RIPC-protocol consisting of 4 × 5 min inflation/deflation of a blood pressure cuff located at the upper arm. Plasma was collected before (T0; control), directly after (T1) and 1 h after (T2) the RIPC procedure. HUVEC were subjected to 24 h hypoxia damage and simultaneously incubated with 5% of the respective RIPC-plasma. Cell damage was evaluated by lactate dehydrogenase (LDH)-measurements. Western blot experiments of hypoxia inducible factor 1 alpha (HIF1alpha), phosphorylated signal transducer and activator of transcription 5 (STAT5), protein kinase B (AKT) and extracellular signal-related kinase 1/2 (ERK-1/2) were performed. Furthermore, the concentrations of hVEGF were evaluated in the RIPC-plasma by sandwich ELISA. Hypoxia-induced cell damage was significantly reduced by plasma T1 (p = 0.02 vs T0). The protective effect of plasma T1 was accompanied by an augmentation of the intracellular HIF1alpha (p = 0.01 vs T0) and increased phosphorylation of ERK-1/2 (p = 0.03 vs T0). Phosphorylation of AKT and STAT5 remained unchanged. Analysis of the protective RIPC-plasma T1 showed significantly reduced levels of hVEGF (p = 0.01 vs T0). RIPC plasma protects endothelial cells from hypoxia-induced cell damage and humoral mediators as well as intracellular HIF1alpha may be involved.


Remote Ischemic Preconditioning Does Not Affect the Release of Humoral Factors in Propofol-Anesthetized Cardiac Surgery Patients: A Secondary Analysis of the RIPHeart Study.

  • Julia Ney‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

In contrast to several smaller studies, which demonstrate that remote ischemic preconditioning (RIPC) reduces myocardial injury in patients that undergo cardiovascular surgery, the RIPHeart study failed to demonstrate beneficial effects of troponin release and clinical outcome in propofol-anesthetized cardiac surgery patients. Therefore, we addressed the potential biochemical mechanisms triggered by RIPC. This is a predefined prospective sub-analysis of the randomized and controlled RIPHeart study in cardiac surgery patients (n = 40) that was recently published. Blood samples were drawn from patients prior to surgery, after RIPC of four cycles of 5 min arm ischemia/5 min reperfusion (n = 19) and the sham (n = 21) procedure, after connection to cardiopulmonary bypass (CPB), at the end of surgery, 24 h postoperatively, and 48 h postoperatively for the measurement of troponin T, macrophage migration inhibitory factor (MIF), stromal cell-derived factor 1 (CXCL12), IL-6, CXCL8, and IL-10. After RIPC, right atrial tissue samples were taken for the measurement of extracellular-signal regulated kinase (ERK1/2), protein kinase B (AKT), Glycogen synthase kinase 3 (GSK-3β), protein kinase C (PKCε), and MIF content. RIPC did not significantly reduce the troponin release when compared with the sham procedure. MIF serum levels intraoperatively increased, peaking at intensive care unit (ICU) admission (with an increase of 48.04%, p = 0.164 in RIPC; and 69.64%, p = 0.023 over the baseline in the sham procedure), and decreased back to the baseline 24 h after surgery, with no differences between the groups. In the right atrial tissue, MIF content decreased after RIPC (1.040 ± 1.032 Arbitrary units [au] in RIPC vs. 2.028 ± 1.631 [au] in the sham procedure, p < 0.05). CXCL12 serum levels increased significantly over the baseline at the end of surgery, with no differences between the groups. ERK1/2, AKT, GSK-3β, and PKCɛ phosphorylation in the right atrial samples were no different between the groups. No difference was found in IL-6, CXCL8, and IL10 serum levels between the groups. In this cohort of cardiac surgery patients that received propofol anesthesia, we could not show a release of potential mediators of signaling, nor an effect on the inflammatory response, nor an activation of well-established protein kinases after RIPC. Based on these data, we cannot exclude that confounding factors, such as propofol, may have interfered with RIPC.


Morphine induces preconditioning via activation of mitochondrial K(Ca) channels.

  • Jan Frässdorf‎ et al.
  • Canadian journal of anaesthesia = Journal canadien d'anesthesie‎
  • 2010‎

Mitochondrial calcium sensitive potassium (mK(Ca)) channels are involved in cardioprotection induced by ischemic preconditioning. In the present study we investigated whether morphine-induced preconditioning also involves activation of mK(Ca) channels.


Cyclophilin D ablation is associated with increased end-ischemic mitochondrial hexokinase activity.

  • Rianne Nederlof‎ et al.
  • Scientific reports‎
  • 2017‎

Both the absence of cyclophilin D (CypD) and the presence of mitochondrial bound hexokinase II (mtHKII) protect the heart against ischemia/reperfusion (I/R) injury. It is unknown whether CypD determines the amount of mtHKII in the heart. We examined whether CypD affects mtHK in normoxic, ischemic and preconditioned isolated mouse hearts. Wild type (WT) and CypD-/- mouse hearts were perfused with glucose only and subjected to 25 min ischemia and reperfusion. At baseline, cytosolic and mtHK was similar between hearts. CypD ablation protected against I/R injury and increased ischemic preconditioning (IPC) effects, without affecting end-ischemic mtHK. When hearts were perfused with glucose, glutamine, pyruvate and lactate, the preparation was more stable and CypD ablation-resulted in more protection that was associated with increased mtHK activity, leaving little room for additional protection by IPC. In conclusion, in glucose only-perfused hearts, deletion of CypD is not associated with end-ischemic mitochondrial-HK binding. In contrast, in the physiologically more relevant multiple-substrate perfusion model, deletion of CypD is associated with an increased mtHK activity, possibly explaining the increased protection against I/R injury.


Plasma from Volunteers Breathing Helium Reduces Hypoxia-Induced Cell Damage in Human Endothelial Cells-Mechanisms of Remote Protection Against Hypoxia by Helium.

  • Kirsten F Smit‎ et al.
  • Cardiovascular drugs and therapy‎
  • 2019‎

Remote ischemic preconditioning protects peripheral organs against prolonged ischemia/reperfusion injury via circulating protective factors. Preconditioning with helium protected healthy volunteers against postischemic endothelial dysfunction. We investigated whether plasma from helium-treated volunteers can protect human umbilical vein endothelial cells (HUVECs) against hypoxia in vitro through release of circulating of factors.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: