Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 18,447 papers

Liver ischemia preconditions the heart against ischemia-reperfusion arrhythmias.

  • Mohammad-Foad Noorbakhsh‎ et al.
  • Iranian journal of basic medical sciences‎
  • 2015‎

This study aimed to examine the hypothesis that an antiarrhythmic effect might be obtained by ischemic preconditioning of the liver, and also to characterize the potential underlying mechanisms.


Zinc Supplementation and Ischemia Pre-conditioning in Renal Ischemia/Reperfusion Injury.

  • Bahar Mazaheri‎ et al.
  • The Malaysian journal of medical sciences : MJMS‎
  • 2019‎

Renal ischemia/reperfusion (RIR) is a major cause of kidney dysfunction in clinic. The main objective of this study was to investigate the effect of pre-conditioning ischemia (IPC) and zinc (Zn) supplementation on renal RIR injury.


Abrogation of graft ischemia-reperfusion injury in ischemia-free liver transplantation.

  • Zhiyong Guo‎ et al.
  • Clinical and translational medicine‎
  • 2022‎

Ischemia-reperfusion injury (IRI) is considered an inherent component of organ transplantation that compromises transplant outcomes and organ availability. The ischemia-free liver transplantation (IFLT) procedure has been developed to avoid interruption of blood supply to liver grafts. It is unknown how IFLT might change the characteristics of graft IRI.


Chick embryo partial ischemia model: a new approach to study ischemia ex vivo.

  • Syamantak Majumder‎ et al.
  • PloS one‎
  • 2010‎

Ischemia is a pathophysiological condition due to blockade in blood supply to a specific tissue thus damaging the physiological activity of the tissue. Different in vivo models are presently available to study ischemia in heart and other tissues. However, no ex vivo ischemia model has been available to date for routine ischemia research and for faster screening of anti-ischemia drugs. In the present study, we took the opportunity to develop an ex vivo model of partial ischemia using the vascular bed of 4(th) day incubated chick embryo.


Ischemia-induced depolarizations and associated hemodynamic responses in incomplete global forebrain ischemia in rats.

  • Z Bere‎ et al.
  • Neuroscience‎
  • 2014‎

Spontaneous depolarizations around the core are a consistent feature of focal cerebral ischemia, but the associated regional hemodynamic changes are heterogeneous. We determined how the features of depolarizations relate to subsequent cerebral blood flow (CBF) changes in global forebrain ischemia. Forebrain ischemia was produced in halothane-anesthetized rats (n=13) by common carotid artery occlusion and hypovolemic hypotension. Mean arterial blood pressure (MABP) was monitored via a femoral catheter. Specific illuminations allowed the capture of image sequences through a cranial window to visualize: changes in membrane potential (voltage-sensitive dye method); CBF (laser speckle contrast imaging); cerebral blood volume (intrinsic optical signal, IOS at 540-550nm); and hemoglobin deoxygenation (IOS at 620-640nm). A depolarization occurred (n=9) when CBF fell below 43.4±5% of control (41±4mmHg MABP), and propagated with a distinct wave front at a rate of 2.8mm/min. Depolarizations were either persistent (n=4), intermediate (n=3) or short, transient depolarization (n=2). Persistent and intermediate depolarizations were associated with sustained hypoperfusion (-11.7±5.1%) and transient hypoperfusion (-17.4±5.2, relative to CBF before depolarization). Short, transient depolarizations did not generate clear CBF responses. Depolarizations during incomplete global ischemia occurred at the lower limit of CBF autoregulation, propagated similar to spreading depolarization (SD), and the hemodynamic responses indicated inverse neurovascular coupling. Similar to SDs associated with focal stroke, the propagating event can be persistent or transient.


Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion.

  • Yang Li‎ et al.
  • Cell death and differentiation‎
  • 2019‎

Ferroptosis is a recently identified form of regulated cell death defined by the iron-dependent accumulation of lipid reactive oxygen species. Ferroptosis has been studied in various diseases such as cancer, Parkinson's disease, and stroke. However, the exact function and mechanism of ferroptosis in ischemia/reperfusion (I/R) injury, especially in the intestine, remains unknown. Considering the unique conditions required for ferroptosis, we hypothesize that ischemia promotes ferroptosis immediately after intestinal reperfusion. In contrast to conventional strategies employed in I/R studies, we focused on the ischemic phase. Here we verified ferroptosis by assessing proferroptotic changes after ischemia along with protein and lipid peroxidation levels during reperfusion. The inhibition of ferroptosis by liproxstatin-1 ameliorated I/R-induced intestinal injury. Acyl-CoA synthetase long-chain family member 4 (ACSL4), which is a key enzyme that regulates lipid composition, has been shown to contribute to the execution of ferroptosis, but its role in I/R needs clarification. In the present study, we used rosiglitazone (ROSI) and siRNA to inhibit ischemia/hypoxia-induced ACSL4 in vivo and in vitro. The results demonstrated that ACSL4 inhibition before reperfusion protected against ferroptosis and cell death. Further investigation revealed that special protein 1 (Sp1) was a crucial transcription factor that increased ACSL4 transcription by binding to the ACSL4 promoter region. Collectively, this study demonstrates that ferroptosis is closely associated with intestinal I/R injury, and that ACSL4 has a critical role in this lethal process. Sp1 is an important factor in promoting ACSL4 expression. These results suggest a unique and effective mechanistic approach for intestinal I/R injury prevention and treatment.


Regulating DNA methylation could reduce neuronal ischemia response and apoptosis after ischemia-reperfusion injury.

  • Yigang Lv‎ et al.
  • Gene‎
  • 2022‎

Ischemia-reperfusion injury (IRI) is an important pathophysiological condition that can cause cell injury and large-scale tissue injury in the nervous system. Previous studies have shown that epigenetic regulation may play a role in the pathogenesis of IRI.


Human embryonic stem cell-derived cardiomyocyte therapy in mouse permanent ischemia and ischemia-reperfusion models.

  • You Yu‎ et al.
  • Stem cell research & therapy‎
  • 2019‎

Ischemic heart diseases are still a threat to human health. Human pluripotent stem cell-based transplantation exhibits great promise in cardiovascular disease therapy, including heart ischemia. The purpose of this study was to compare the efficacy of human embryonic stem cell-derived cardiomyocyte (ESC-CM) therapy in two heart ischemia models, namely, permanent ischemia (PI) and myocardial ischemia reperfusion (IR).


Remote post-conditioning and allopurinol reduce ischemia-reperfusion injury in an infra-renal ischemia model.

  • Rafael Inácio Brandão‎ et al.
  • Therapeutic advances in cardiovascular disease‎
  • 2018‎

The aim of this study was to evaluate the effects of the antioxidant allopurinol and ischemic post-conditioning on the deleterious effects of ischemia followed by reperfusion (I/R) in a standardized model of ischemia involving infra-renal aortic occlusion in rats.


PARP inhibition attenuates histopathological lesion in ischemia/reperfusion renal mouse model after cold prolonged ischemia.

  • Raimundo M G del Moral‎ et al.
  • TheScientificWorldJournal‎
  • 2013‎

We test the hypothesis that PARP inhibition can decrease acute tubular necrosis (ATN) and other renal lesions related to prolonged cold ischemia/reperfusion (IR) in kidneys preserved at 4°C in University of Wisconsin (UW) solution. Material and Methods. We used 30 male Parp1(+/+) wild-type and 15 male Parp1(0/0) knockout C57BL/6 mice. Fifteen of these wild-type mice were pretreated with 3,4-dihydro-5-[4-(1-piperidinyl)butoxyl]-1(2H)-isoquinolinone (DPQ) at a concentration of 15 mg/kg body weight, used as PARP inhibitor. Subgroups of mice were established (A: IR 45 min/6 h; B: IR + 48 h in UW solution; and C: IR + 48 h in UW solution plus DPQ). We processed samples for morphological, immunohistochemical, ultrastructural, and western-blotting studies. Results. Prolonged cold ischemia time in UW solution increased PARP-1 expression and kidney injury. Preconditioning with PARP inhibitor DPQ plus DPQ supplementation in UW solution decreased PARP-1 nuclear expression in renal tubules and renal damage. Parp1(0/0) knockout mice were more resistant to IR-induced renal lesion. In conclusion, PARP inhibition attenuates ATN and other IR-related renal lesions in mouse kidneys under prolonged cold storage in UW solution. If confirmed, these data suggest that pharmacological manipulation of PARP activity may have salutary effects in cold-stored organs at transplantation.


Metabolome Changes in Cerebral Ischemia.

  • Tae Hwan Shin‎ et al.
  • Cells‎
  • 2020‎

Cerebral ischemia is caused by perturbations in blood flow to the brain that trigger sequential and complex metabolic and cellular pathologies. This leads to brain tissue damage, including neuronal cell death and cerebral infarction, manifesting clinically as ischemic stroke, which is the cause of considerable morbidity and mortality worldwide. To analyze the underlying biological mechanisms and identify potential biomarkers of ischemic stroke, various in vitro and in vivo experimental models have been established investigating different molecular aspects, such as genes, microRNAs, and proteins. Yet, the metabolic and cellular pathologies of ischemic brain injury remain not fully elucidated, and the relationships among various pathological mechanisms are difficult to establish due to the heterogeneity and complexity of the disease. Metabolome-based techniques can provide clues about the cellular pathologic status of a condition as metabolic disturbances can represent an endpoint in biological phenomena. A number of investigations have analyzed metabolic changes in samples from cerebral ischemia patients and from various in vivo and in vitro models. We previously analyzed levels of amino acids and organic acids, as well as polyamine distribution in an in vivo rat model, and identified relationships between metabolic changes and cellular functions through bioinformatics tools. This review focuses on the metabolic and cellular changes in cerebral ischemia that offer a deeper understanding of the pathology underlying ischemic strokes and contribute to the development of new diagnostic and therapeutic approaches.


SC79, the AKT Activator Protects Cerebral Ischemia in a Rat Model of Ischemia/Reperfusion Injury.

  • Qi Luan‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2018‎

BACKGROUND Activation of AKT pathway attenuates brain damage and neuronal apoptosis during cerebral ischemia/reperfusion (I/R) injury. SC79 is a novel, selective and highly-efficient Akt activator. This study aimed to investigate the neuroprotective effect of SC79 against cerebral I/R injury in a rat model, and to explore the possible underlying mechanisms. MATERIAL AND METHODS Male Sprague-Dawley rats received cerebral ischemia for 1 hour, followed by brain reperfusion for 0.5-24 hours. The cerebral I/R injury animal model were treated with SC79 alone or SC79 in combination with LY294002. Western blots were used to detect the levels of expression of phosphatidylinositol AKT (p-Akt), Bax, and bcl-2. Twenty-four hours after cerebral I/R, the degree of brain injury was evaluated by detecting the neurological deficit score (NDS). The infarct rate of brain tissue was observed by TTC (2, 3, 5-triphenyltetrazolium chloride) staining. TUNEL (terminal deoxynucleotidyl transferase-mediated UTP nick end labeling) staining was used to detect cell apoptosis. RESULTS p-Akt was activated during early cerebral I/R at 0.5 hours, and reached the highest levels at 4 hours, then gradually decreased from 6 hours, and reached and maintained the lowest levels at 12-24 hours. Bax expression was gradually increased from 6 hours and reached the highest level at 24 hours. However, bcl-2 expression was gradually increased and reached the highest levels at 4 hours, then gradually decreased from 6 hours, and reached the lowest levels at 24 hours. Administration of SC79 decreased infarct volumes and improved neurological function significantly. LY294002 in combination with SC79 lost the capability of SC79 to resist the cerebral I/R injury. SC79 treatment alone activated p-Akt and promoted anti-apoptotic bcl-2 and inhibited anti-apoptotic Bax expression in middle cerebral artery occlusion (MCAO) mice. However, combined SC79 and LY294002 treatment abolished SC79-induced p-Akt activity, inhibited anti-apoptotic bcl-2 and promoted anti-apoptotic Bax expression in MCAO mice. Furthermore, SC79 treatment alone attenuated apoptotic neuronal cell death, but abolished this effect in SC79 in combination with LY294002 treated groups. CONCLUSIONS SC79 significantly increased Akt activation and reduced infarct volume and subsequently improved neurological function in ischemic brain after cerebral I/R injury in rats. These findings suggested that SC79 may be as a neuroprotective drug to be potentially used in the clinic.


Melatonin and Glycine Reduce Uterus Ischemia/Reperfusion Injury in a Rat Model of Warm Ischemia.

  • Viktorija Zitkute‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Ischemia/reperfusion injury (IRI) remains a significant problem to be solved in uterus transplantation (UTx). Melatonin and glycine have been shown to possess direct cytoprotective activities, mainly due to their antioxidative and anti-inflammatory properties. The aim of this study was to investigate the protective effects of melatonin and glycine and their combination on IRI in a rat model of warm ischemia. In this study, Sprague-Dawley rats were assigned to eight groups, including sham and IRI (n = 80). Melatonin and glycine alone or their combination were administered prior to 1 h of uterus ischemia followed by 1 h of reperfusion. Melatonin (50 mg/kg) was administered via gavage 2 h before IRI and glycine in an enriched diet for 5 days prior to intervention. Uterus IRI was estimated by histology, including immunohistochemistry, and biochemical tissue analyses. Histology revealed that uterus IRI was significantly attenuated by pretreatment with melatonin (p = 0.019) and glycine (p = 0.044) alone as well as their combination (p = 0.003). Uterus IRI led to increased myeloperoxidase expression, which was significantly reduced by melatonin (p = 0.004), glycine (p < 0.001) or their combination (p < 0.001). The decline in superoxide dismutase activity was significantly reduced in the melatonin (p = 0.027), glycine (p = 0.038) and combined treatment groups (p = 0.015) when compared to the IRI control group. In conclusion, melatonin, glycine and their combination significantly reduced oxidative stress-induced cell damage after IRI in a small animal warm ischemia model, and, therefore, clinical studies are required to evaluate the protective effects of these well-characterized substances in uterus IRI.


Effectiveness and safety of partial nephrectomy-no ischemia vs. warm ischemia: Systematic review and meta-analysis.

  • Sergio Hernando Mina-Riascos‎ et al.
  • Investigative and clinical urology‎
  • 2020‎

This study aimed to determine the effectiveness and safety of partial nephrectomy (PN) without ischemia compared with PN with warm ischemia for reducing the deterioration in renal function in patients with cT1 renal tumors.


HIF-1α signaling activation by post-ischemia treatment with astragaloside IV attenuates myocardial ischemia-reperfusion injury.

  • Jingwen Si‎ et al.
  • PloS one‎
  • 2014‎

In this study, we evaluated the effect of astragaloside IV (Ast IV) post-ischemia treatment on myocardial ischemia-reperfusion (IR) injury (IRI). We also examined whether hypoxia inducible factor-1α (HIF-1α) and its downstream gene-inducible nitric oxide (NO) synthase (iNOS) play roles in the cardioprotective effect of Ast IV. Cultured cardiomyocytes and perfused isolated rat hearts were exposed to Ast IV during reperfusion in the presence or absence of the HIF-1α inhibitor 2-methoxyestradiol (2-MeOE2). The post-ischemia treatment with Ast IV protected cardiomyocytes from the apoptosis and death induced by simulated IRI (SIRI). Additionally, in cardiomyocytes, 2-MeOE2 and HIF-1α siRNA treatment each not only abolished the anti-apoptotic effect of post-ischemia treatment with Ast IV but also reversed the upregulation of HIF-1α and iNOS expression. Furthermore, after treatment with Ast IV, post-ischemic cardiac functional recovery and lactate dehydrogenase (LDH) release in the coronary flow (CF) were improved, and the myocardial infarct size was decreased. Moreover, the number of apoptotic cells was reduced, and the upregulation of the anti-apoptotic protein Bcl2 and downregulation of the pro-apoptotic protein Caspase3 were reversed. 2-MeOE2 reversed these effects of Ast IV on IR-injured hearts. These results suggest that post-ischemia treatment with Ast IV can attenuate IRI by upregulating HIF-1α expression, which transmits a survival signal to the myocardium.


5-aminolevulinate and CHIL3/CHI3L1 treatment amid ischemia aids liver metabolism and reduces ischemia-reperfusion injury.

  • Guanghui Jin‎ et al.
  • Theranostics‎
  • 2023‎

Rationale: Liver resection and transplantation surgeries are accompanied by hepatic ischemia-reperfusion (HIR) injury that hampers the subsequent liver recovery. Given that the liver is the main organ for metabolism and detoxification, ischemia-reperfusion in essence bestows metabolic stress upon the liver and disrupts local metabolic and immune homeostasis. Most of the recent and current research works concerning HIR have been focusing on addressing HIR-induced hepatic injury and inflammation, instead of dealing with the metabolic reprogramming and restoration of redox homeostasis. As our previous work uncovers the importance of 5-aminolevulinate (5-ALA) synthesis during stress adaptation, here we evaluate the effects of supplementing 5-ALA to mitigate HIR injury. Methods: 5-ALA was supplemented into the mice or cultured cells during the ischemic or oxygen-glucose deprivation (OGD) phase. Following reperfusion or reoxygenation, cellular metabolism and energy homeostasis, mitochondrial production of reactive oxygen species (ROS) and transcriptomic changes were evaluated in HIR mouse models or cultured hepatocytes and macrophages. Liver injury, hepatocytic functional tests, and macrophagic M1/M2 polarization were assessed. Results: Dynamic changes in the expression of key enzymes in 5-ALA metabolism were first confirmed in donor and mouse liver samples following HIR. Supplemented 5-ALA modulated mouse hepatic lipid metabolism and reduced ATP production in macrophages following HIR, resulting in elevation of anti-inflammatory M2 polarization. Mechanistically, 5-ALA down-regulates macrophagic chemokine receptor CX3CR1 via the repression of RelA following OGD and reoxygenation (OGD/R). Cx3cr1 KO mice demonstrated milder liver injuries and more macrophage M2 polarization after HIR. M2 macrophage-secreted chitinase-like protein 3 (CHIL3; CHI3L1 in human) is an important HIR-induced effector downstream of CX3CR1 deficiency. Addition of CHIL3/CHI3L1 alone improved hepatocellular metabolism and reduced OGD/R-inflicted injuries in cultured mouse and human hepatocytes. Combined treatment with 5-ALA and CHIL3 during the ischemic phase facilitated lipid metabolism and ATP production in the mouse liver following HIR. Conclusion: Our results reveal that supplementing 5-ALA promotes macrophagic M2 polarization via downregulation of RelA and CX3CR1 in mice following HIR, while M2 macrophage-produced CHIL3/CHI3L1 also manifests beneficial effects to the recovery of hepatic metabolism. 5-ALA and CHIL3/CHI3L1 together mitigate HIR-induced mitochondrial dysfunction and hepatocellular injuries, which may be developed into safe and effective clinical treatments to attenuate HIR injuries.


Ischemia induces autophagy of endothelial cells and stimulates angiogenic effects in a hindlimb ischemia mouse model.

  • In-Hye Jeong‎ et al.
  • Cell death & disease‎
  • 2020‎

Although peripheral artery disease (PAD) is a major health problem, there have been limited advances in medical therapies. In PAD patients, angiogenesis is regarded as a promising therapeutic strategy to promote new arterial vessels and improve perfusion of ischemic tissue. Autophagy plays a critical role in catabolic processes for cell survival under normal and stressful conditions and plays fundamental biological roles in various cellular functions. In the present study, we showed that autophagy in endothelial cells is important for the repair and regeneration of damaged tissues. In a hindlimb ischemia mouse model, autophagy was stimulated in endothelial cells of the quadriceps muscle, and adjacent cells proliferated and regenerated. The autophagy pathway was induced under prolonged hypoxia in endothelial cells, and autophagy increased angiogenic activities. Moreover, conditioned media from endothelial cells blocked autophagy and inhibited the proliferation of muscle cells, suggesting that autophagic stimulation in endothelial cells affects the survival of adjacent cells, such as muscle. Collectively, hypoxia/ischemia-induced autophagy angiogenesis, and the damaged tissue surrounded by neo-vessels was regenerated in an ischemia model. Therefore, we strongly suggest that stimulation of autophagy in endothelial cells may be a potent therapeutic strategy in severe vascular diseases, including PAD.


Warm ischemia time-dependent variation in liver damage, inflammation, and function in hepatic ischemia/reperfusion injury.

  • Pim B Olthof‎ et al.
  • Biochimica et biophysica acta. Molecular basis of disease‎
  • 2017‎

Hepatic ischemia/reperfusion (I/R) injury is characterized by hepatocellular damage, sterile inflammation, and compromised postoperative liver function. Generally used mouse I/R models are too severe and poorly reflect the clinical injury profile. The aim was to establish a mouse I/R model with better translatability using hepatocellular injury, liver function, and innate immune parameters as endpoints.


Myocardial infarction models in NOD/Scid mice for cell therapy research: permanent ischemia vs ischemia-reperfusion.

  • Vanessa-Leigh van Zuylen‎ et al.
  • SpringerPlus‎
  • 2015‎

Myocardial infarction animal studies are used to study disease mechanisms and new treatment options. Typically, myocardial infarction (MI) is induced by permanent occlusion of the left anterior descending artery. Since in MI patients coronary blood flow is often restored new experimental models better reflecting clinical practice are needed. Here, permanent ischemia MI (PI group) was compared with transient ischemia (45 min) (IR group) in immunodeficient NOD/Scid mice. Cardiac function, infarct size, wall thickness and total collagen deposition were significantly reduced only in PI mice. Cardiac inflammatory cells and serum cytokine levels were less dynamic in IR animals compared to PI. So although IR better reflects clinical practice, it is secondary to PI for investigating cell therapy, since it induces too little damage to provide a measurable therapeutic window. MI did result in significant changes in the inflammatory state, indicating this immunodeficient mouse strain is valuable to study human cell therapy.


Is aryl hydrocarbon receptor antagonism after ischemia effective in alleviating acute hepatic ischemia-reperfusion injury in rats?

  • Jae-Im Kwon‎ et al.
  • Heliyon‎
  • 2023‎

Aryl hydrocarbon receptors (AhRs) have been reported to be important mediators of ischemic injury in the brain. Furthermore, the pharmacological inhibition of AhR activation after ischemia has been shown to attenuate cerebral ischemia-reperfusion (IR) injury. Here, we investigated whether AhR antagonist administration after ischemia was also effective in ameliorating hepatic IR injury. A 70% partial hepatic IR (45-min ischemia and 24-h reperfusion) injury was induced in rats. We administered 6,2',4'-trimethoxyflavone (TMF, 5 mg/kg) intraperitoneally 10 min after ischemia. Hepatic IR injury was observed using serum, magnetic resonance imaging-based liver function indices, and liver samples. TMF-treated rats showed significantly lower relative enhancement (RE) values and serum alanine aminotransferase (ALT) and aspartate aminotransferase levels than did untreated rats at 3 h after reperfusion. After 24 h of reperfusion, TMF-treated rats had significantly lower RE values, ΔT1 values, serum ALT levels, and necrotic area percentage than did untreated rats. The expression of the apoptosis-related proteins, Bax and cleaved caspase-3, was significantly lower in TMF-treated rats than in untreated rats. This study demonstrated that inhibition of AhR activation after ischemia was effective in ameliorating IR-induced liver injury in rats.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: