Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 50 papers

Defining the interactions between intermediate filaments and desmosomes.

  • E A Smith‎ et al.
  • The Journal of cell biology‎
  • 1998‎

Desmoplakin (DP), plakoglobin (PG), and plakophilin 1 (PP1) are desmosomal components lacking a transmembrane domain, thus making them candidate linker proteins for connecting intermediate filaments and desmosomes. Using deletion and site-directed mutagenesis, we show that remarkably, removal of approximately 1% of DP's sequence obliterates its ability to associate with desmosomes. Conversely, when linked to a foreign protein, as few as 86 NH2-terminal DP residues are sufficient to target to desmosomes efficiently. In in vitro overlay assays, the DP head specifically associates with itself and with desmocollin 1a (Dsc1a). In similar overlay assays, PP1 binds to DP and Dsc1a, and to a lesser extent, desmoglein 1 (Dsg1), while PG binds to Dsg1 and more weakly to Dsc1a and DP. Interestingly, like DP, PG and PP1 associate with epidermal keratins, although PG is considerably weaker in its ability to do so. As judged by overlay assays, the amino terminal head domain of type II keratins appears to have a special importance in establishing these connections. Taken together, our findings provide new insights into the complexities of the links between desmosomes and intermediate filaments (IFs). Our results suggest a model whereby at desmosome sites within dividing epidermal cells, DP and PG anchor to desmosomal cadherins and to each other, forming an ordered array of nontransmembrane proteins that then bind to keratin IFs. As epidermal cells differentiate, PP1 is added as a molecular reinforcement to the plaque, enhancing anchorage to IFs and accounting at least partially for the increase in numbers and stability of desmosomes in suprabasal cells.


DEDD regulates degradation of intermediate filaments during apoptosis.

  • Justine C Lee‎ et al.
  • The Journal of cell biology‎
  • 2002‎

Apoptosis depends critically on regulated cytoskeletal reorganization events in a cell. We demonstrate that death effector domain containing DNA binding protein (DEDD), a highly conserved and ubiquitous death effector domain containing protein, exists predominantly as mono- or diubiquitinated, and that diubiquitinated DEDD interacts with both the K8/18 intermediate filament network and pro-caspase-3. Early in apoptosis, both cytosolic DEDD and its close homologue DEDD2 formed filaments that colocalized with and depended on K8/18 and active caspase-3. Subsequently, these filamentous structures collapsed into intracellular inclusions that migrated into cytoplasmic blebs and contained DEDD, DEDD2, active caspase-3, and caspase-3-cleaved K18 late in apoptosis. Biochemical studies further confirmed that DEDD coimmunoprecipitated with both K18 and pro-caspase-3, and kinetic analyses placed apoptotic DEDD staining prior to caspase-3 activation and K18 cleavage. In addition, both caspase-3 activation and K18 cleavage was inhibited by expression of DEDDDeltaNLS1-3, a cytosolic form of DEDD that cannot be ubiquitinated. Finally, siRNA mediated DEDD knockdown cells exhibited inhibition of staurosporine-induced DNA degradation. Our data suggest that DEDD represents a novel scaffold protein that directs the effector caspase-3 to certain substrates facilitating their ordered degradation during apoptosis.


Self-organization of keratin intermediate filaments into cross-linked networks.

  • Chang-Hun Lee‎ et al.
  • The Journal of cell biology‎
  • 2009‎

Keratins, the largest subgroup of intermediate filament (IF) proteins, form a network of 10-nm filaments built from type I/II heterodimers in epithelial cells. A major function of keratin IFs is to protect epithelial cells from mechanical stress. Like filamentous actin, keratin IFs must be cross-linked in vitro to achieve the high level of mechanical resilience characteristic of live cells. Keratins 5 and 14 (K5 and K14), the main pairing occurring in the basal progenitor layer of epidermis and related epithelia, can readily self-organize into large filament bundles in vitro and in vivo. Here, we show that filament self-organization is mediated by multivalent interactions involving distinct regions in K5 and K14 proteins. Self-organization is determined independently of polymerization into 10-nm filaments, but involves specific type I-type II keratin complementarity. We propose that self-organization is a key determinant of the structural support function of keratin IFs in vivo.


Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia.

  • Marie Schoumacher‎ et al.
  • The Journal of cell biology‎
  • 2010‎

Invasive cancer cells are believed to breach the basement membrane (BM) using specialized protrusions called invadopodia. We found that the crossing of a native BM is a three-stage process: invadopodia indeed form and perforate the BM, elongate into mature invadopodia, and then guide the cell toward the stromal compartment. We studied the remodeling of cytoskeleton networks during invadopodia formation and elongation using ultrastructural analysis, spatial distribution of molecular markers, and RNA interference silencing of protein expression. We show that formation of invadopodia requires only the actin cytoskeleton and filopodia- and lamellipodia-associated proteins. In contrast, elongation of invadopodia is mostly dependent on filopodial actin machinery. Moreover, intact microtubules and vimentin intermediate filament networks are required for further growth. We propose that invadopodia form by assembly of dendritic/diagonal and bundled actin networks and then mature by elongation of actin bundles, followed by the entry of microtubules and vimentin filaments. These findings provide a link between the epithelial to mesenchymal transition and BM transmigration.


APC binds intermediate filaments and is required for their reorganization during cell migration.

  • Yasuhisa Sakamoto‎ et al.
  • The Journal of cell biology‎
  • 2013‎

Intermediate filaments (IFs) are components of the cytoskeleton involved in most cellular functions, including cell migration. Primary astrocytes mainly express glial fibrillary acidic protein, vimentin, and nestin, which are essential for migration. In a wound-induced migration assay, IFs reorganized to form a polarized network that was coextensive with microtubules in cell protrusions. We found that the tumor suppressor adenomatous polyposis coli (APC) was required for microtubule interaction with IFs and for microtubule-dependent rearrangements of IFs during astrocyte migration. We also show that loss or truncation of APC correlated with the disorganization of the IF network in glioma and carcinoma cells. In migrating astrocytes, vimentin-associated APC colocalized with microtubules. APC directly bound polymerized vimentin via its armadillo repeats. This binding domain promoted vimentin polymerization in vitro and contributed to the elongation of IFs along microtubules. These results point to APC as a crucial regulator of IF organization and confirm its fundamental role in the coordinated regulation of cytoskeletons.


Insights into the dynamic properties of keratin intermediate filaments in living epithelial cells.

  • K H Yoon‎ et al.
  • The Journal of cell biology‎
  • 2001‎

The properties of keratin intermediate filaments (IFs) have been studied after transfection with green fluorescent protein (GFP)-tagged K18 and/or K8 (type I/II IF proteins). GFP-K8 and -K18 become incorporated into tonofibrils, which are comprised of bundles of keratin IFs. These tonofibrils exhibit a remarkably wide range of motile and dynamic activities. Fluorescence recovery after photobleaching (FRAP) analyses show that they recover their fluorescence slowly with a recovery t(1/2) of approximately 100 min. The movements of bleach zones during recovery show that closely spaced tonofibrils (<1 microm apart) often move at different rates and in different directions. Individual tonofibrils frequently change their shapes, and in some cases these changes appear as propagated waveforms along their long axes. In addition, short fibrils, termed keratin squiggles, are seen at the cell periphery where they move mainly towards the cell center. The motile properties of keratin IFs are also compared with those of type III IFs (vimentin) in PtK2 cells. Intriguingly, the dynamic properties of keratin tonofibrils and squiggles are dramatically different from those of vimentin fibrils and squiggles within the same cytoplasmic regions. This suggests that there are different factors regulating the dynamic properties of different types of IFs within the same cytoplasmic regions.


Caspase cleavage of keratin 18 and reorganization of intermediate filaments during epithelial cell apoptosis.

  • C Caulín‎ et al.
  • The Journal of cell biology‎
  • 1997‎

Keratins 8 (K8) and 18 (K18) are major components of intermediate filaments (IFs) of simple epithelial cells and tumors derived from such cells. Structural cell changes during apoptosis are mediated by proteases of the caspase family. During apoptosis, K18 IFs reorganize into granular structures enriched for K18 phosphorylated on serine 53. K18, but not K8, generates a proteolytic fragment during drug- and UV light-induced apoptosis; this fragment comigrates with K18 cleaved in vitro by caspase-6, -3, and -7. K18 is cleaved by caspase-6 into NH2-terminal, 26-kD and COOH-terminal, 22-kD fragments; caspase-3 and -7 additionally cleave the 22-kD fragment into a 19-kD fragment. The cleavage site common for the three caspases was the sequence VEVD/A, located in the conserved L1-2 linker region of K18. The additional site for caspases-3 and -7 that is not cleaved efficiently by caspase-6 is located in the COOH-terminal tail domain of K18. Expression of K18 with alanine instead of serine at position 53 demonstrated that cleavage during apoptosis does not require phosphorylation of serine 53. However, K18 with a glutamate instead of aspartate at position 238 was resistant to proteolysis during apoptosis. Furthermore, this cleavage site mutant appears to cause keratin filament reorganization in stably transfected clones. The identification of the L1-2 caspase cleavage site, and the conservation of the same or very similar sites in multiple other intermediate filament proteins, suggests that the processing of IFs during apoptosis may be initiated by a similar caspase cleavage.


Intermediate filaments control collective migration by restricting traction forces and sustaining cell-cell contacts.

  • Chiara De Pascalis‎ et al.
  • The Journal of cell biology‎
  • 2018‎

Mesenchymal cell migration relies on the coordinated regulation of the actin and microtubule networks that participate in polarized cell protrusion, adhesion, and contraction. During collective migration, most of the traction forces are generated by the acto-myosin network linked to focal adhesions at the front of leader cells, which transmit these pulling forces to the followers. Here, using an in vitro wound healing assay to induce polarization and collective directed migration of primary astrocytes, we show that the intermediate filament (IF) network composed of vimentin, glial fibrillary acidic protein, and nestin contributes to directed collective movement by controlling the distribution of forces in the migrating cell monolayer. Together with the cytoskeletal linker plectin, these IFs control the organization and dynamics of the acto-myosin network, promoting the actin-driven treadmilling of adherens junctions, thereby facilitating the polarization of leader cells. Independently of their effect on adherens junctions, IFs influence the dynamics and localization of focal adhesions and limit their mechanical coupling to the acto-myosin network. We thus conclude that IFs promote collective directed migration in astrocytes by restricting the generation of traction forces to the front of leader cells, preventing aberrant tractions in the followers, and by contributing to the maintenance of lateral cell-cell interactions.


Loss of keratin 6 (K6) proteins reveals a function for intermediate filaments during wound repair.

  • Pauline Wong‎ et al.
  • The Journal of cell biology‎
  • 2003‎

The ability to heal wounds is vital to all organisms. In mammalian tissues, alterations in intermediate filament (IF) gene expression represent an early reaction of cells surviving injury. We investigated the role of keratin IFs during the epithelialization of skin wounds using a keratin 6alpha and 6beta (K6alpha/K6beta)-null mouse model. In skin explant culture, null keratinocytes exhibit an enhanced epithelialization potential due to increased migration. The extent of the phenotype is strain dependent, and is accompanied by alterations in keratin IF and F-actin organization. However, in wounded skin in vivo, null keratinocytes rupture as they attempt to migrate under the blood clot. Fragility of the K6alpha/K6beta-null epidermis is confirmed when applying trauma to chemically treated skin. We propose that the alterations in IF gene expression after tissue injury foster a compromise between the need to display the cellular pliability necessary for timely migration and the requirement for resilience sufficient to withstand the rigors of a wound site.


Desmoplakin assembly dynamics in four dimensions: multiple phases differentially regulated by intermediate filaments and actin.

  • Lisa M Godsel‎ et al.
  • The Journal of cell biology‎
  • 2005‎

The intermediate filament (IF)-binding protein desmoplakin (DP) is essential for desmosome function and tissue integrity, but its role in junction assembly is poorly understood. Using time-lapse imaging, we show that cell-cell contact triggers three temporally overlapping phases of DP-GFP dynamics: (1) the de novo appearance of punctate fluorescence at new contact zones after as little as 3 min; (2) the coalescence of DP and the armadillo protein plakophilin 2 into discrete cytoplasmic particles after as little as 15 min; and (3) the cytochalasin-sensitive translocation of cytoplasmic particles to maturing borders, with kinetics ranging from 0.002 to 0.04 microm/s. DP mutants that abrogate or enhance association with IFs exhibit delayed incorporation into junctions, altering particle trajectory or increasing particle pause times, respectively. Our data are consistent with the idea that DP assembles into nascent junctions from both diffusible and particulate pools in a temporally overlapping series of events triggered by cell-cell contact and regulated by actin and DP-IF interactions.


In vitro assembly and structure of trichocyte keratin intermediate filaments: a novel role for stabilization by disulfide bonding.

  • H Wang‎ et al.
  • The Journal of cell biology‎
  • 2000‎

Intermediate filaments (IF) have been recognized as ubiquitous components of the cytoskeletons of eukaryotic cells for 25 yr. Historically, the first IF proteins to be characterized were those from wool in the 1960s, when they were defined as low sulfur keratins derived from "microfibrils." These proteins are now known as the type Ia/type IIa trichocyte keratins that constitute keratin IF of several hardened epithelial cell types. However, to date, of the entire class of >40 IF proteins, the trichocyte keratins remain the only ones for which efficient in vitro assembly remains unavailable. In this paper, we describe the assembly of expressed mouse type Ia and type IIa trichocyte keratins into IF in high yield. In cross-linking experiments, we document that the alignments of molecules within reduced trichocyte IF are the same as in type Ib/IIb cytokeratins. However, when oxidized in vitro, several intermolecular disulfide bonds form and the molecular alignments rearrange into the pattern shown earlier by x-ray diffraction analyses of intact wool. We suggest the realignments occur because the disulfide bonds confer substantially increased stability to trichocyte keratin IF. Our data suggest a novel role for disulfide bond cross linking in stabilization of these IF and the tissues containing them.


The nonhelical tail domain of keratin 14 promotes filament bundling and enhances the mechanical properties of keratin intermediate filaments in vitro.

  • O Bousquet‎ et al.
  • The Journal of cell biology‎
  • 2001‎

Keratin filaments arise from the copolymerization of type I and II sequences, and form a pancytoplasmic network that provides vital mechanical support to epithelial cells. Keratins 5 and 14 are expressed as a pair in basal cells of stratified epithelia, where they occur as bundled arrays of filaments. In vitro, bundles of K5-K14 filaments can be induced in the absence of cross-linkers, and exhibit enhanced resistance to mechanical strain. This property is not exhibited by copolymers of K5 and tailless K14, in which the nonhelical tail domain has been removed, or copolymers of K5 and K19, a type I keratin featuring a short tail domain. The purified K14 tail domain binds keratin filaments in vitro with specificity (kD approximately 2 microM). When transiently expressed in cultured cells, the K14 tail domain associates with endogenous keratin filaments. Utilization of the K14 tail domain as a bait in a yeast two-hybrid screen pulls out type I keratin sequences from a skin cDNA library. These data suggest that the tail domain of K14 contributes to the ability of K5-K14 filaments to self-organize into large bundles showing enhanced mechanical resilience in vitro.


Assembling an intermediate filament network by dynamic cotranslation.

  • Lynne Chang‎ et al.
  • The Journal of cell biology‎
  • 2006‎

We have been able to observe the dynamic interactions between a specific messenger RNA (mRNA) and its protein product in vivo by studying the synthesis and assembly of peripherin intermediate filaments (IFs). The results show that peripherin mRNA-containing particles (messenger ribonucleoproteins [mRNPs]) move mainly along microtubules (MT). These mRNPs are translationally silent, initiating translation when they cease moving. Many peripherin mRNPs contain multiple mRNAs, possibly amplifying the total amount of protein synthesized within these "translation factories." This mRNA clustering is dependent on MT, regulatory sequences within the RNA and the nascent protein. Peripherin is cotranslationally assembled into insoluble, nonfilamentous particles that are precursors to the long IF that form extensive cytoskeletal networks. The results show that the motility and targeting of peripherin mRNPs, their translational control, and the assembly of an IF cytoskeletal system are linked together in a process we have termed dynamic cotranslation.


Regulation of microtubule-associated motors drives intermediate filament network polarization.

  • Cécile Leduc‎ et al.
  • The Journal of cell biology‎
  • 2017‎

Intermediate filaments (IFs) are key players in the control of cell morphology and structure as well as in active processes such as cell polarization, migration, and mechanoresponses. However, the regulatory mechanisms controlling IF dynamics and organization in motile cells are still poorly understood. In this study, we investigate the mechanisms leading to the polarized rearrangement of the IF network along the polarity axis. Using photobleaching and photoconversion experiments in glial cells expressing vimentin, glial fibrillary acidic protein, and nestin, we show that the distribution of cytoplasmic IFs results from a continuous turnover based on the cooperation of an actin-dependent retrograde flow and anterograde and retrograde microtubule-dependent transports. During wound-induced astrocyte polarization, IF transport becomes directionally biased from the cell center toward the cell front. Such asymmetry in the transport is mainly caused by a Cdc42- and atypical PKC-dependent inhibition of dynein-dependent retrograde transport. Our results show how polarity signaling can affect the dynamic turnover of the IF network to promote the polarization of the network itself.


A novel interaction of the Golgi complex with the vimentin intermediate filament cytoskeleton.

  • Y Gao‎ et al.
  • The Journal of cell biology‎
  • 2001‎

The integration of the vimentin intermediate filament (IF) cytoskeleton and cellular organelles in vivo is an incompletely understood process, and the identities of proteins participating in such events are largely unknown. Here, we show that the Golgi complex interacts with the vimentin IF cytoskeleton, and that the Golgi protein formiminotransferase cyclodeaminase (FTCD) participates in this interaction. We show that the peripherally associated Golgi protein FTCD binds directly to vimentin subunits and to polymerized vimentin filaments in vivo and in vitro. Expression of FTCD in cultured cells results in the formation of extensive FTCD-containing fibers originating from the Golgi region, and is paralleled by a dramatic rearrangements of the vimentin IF cytoskeleton in a coordinate process in which vimentin filaments and FTCD integrate into chimeric fibers. Formation of the FTCD fibers is obligatorily coupled to vimentin assembly and does not occur in vim(-/-) cells. The FTCD-mediated regulation of vimentin IF is not a secondary effect of changes in the microtubule or the actin cytoskeletons, since those cytoskeletal systems appear unaffected by FTCD expression. The assembly of the FTCD/vimentin fibers causes a coordinate change in the structure of the Golgi complex and results in Golgi fragmentation into individual elements that are tethered to the FTCD/vimentin fibers. The observed interaction of Golgi elements with vimentin filaments and the ability of FTCD to specifically interacts with both Golgi membrane and vimentin filaments and promote their association suggest that FTCD might be a candidate protein integrating the Golgi compartment with the IF cytoskeleton.


A role for disulfide bonding in keratin intermediate filament organization and dynamics in skin keratinocytes.

  • Xia Feng‎ et al.
  • The Journal of cell biology‎
  • 2015‎

We recently reported that a trans-dimer, homotypic disulfide bond involving Cys367 in keratin 14 (K14) occurs in an atomic-resolution structure of the interacting K5/K14 2B domains and in keratinocyte cell lines. Here we show that a sizable fraction of the K14 and K5 protein pools participates in interkeratin disulfide bonding in primary cultures of mouse skin keratinocytes. By comparing the properties of wild-type K14 with a completely cysteine-free variant thereof, we found that K14-dependent disulfide bonding limited filament elongation during polymerization in vitro but was necessary for the genesis of a perinuclear-concentrated network of keratin filaments, normal keratin cycling, and the sessile behavior of the nucleus and whole cell in keratinocytes studied by live imaging. Many of these phenotypes were rescued when analyzing a K14 variant harboring a single Cys residue at position 367. These findings establish disulfide bonding as a novel and important mechanism regulating the assembly, intracellular organization, and dynamics of K14-containing intermediate filaments in skin keratinocytes.


Roles of Rho-associated kinase in cytokinesis; mutations in Rho-associated kinase phosphorylation sites impair cytokinetic segregation of glial filaments.

  • Y Yasui‎ et al.
  • The Journal of cell biology‎
  • 1998‎

Rho-associated kinase (Rho-kinase), which is activated by the small GTPase Rho, regulates formation of stress fibers and focal adhesions, myosin fiber organization, and neurite retraction through the phosphorylation of cytoskeletal proteins, including myosin light chain, the ERM family proteins (ezrin, radixin, and moesin) and adducin. Rho-kinase was found to phosphorylate a type III intermediate filament (IF) protein, glial fibrillary acidic protein (GFAP), exclusively at the cleavage furrow during cytokinesis. In the present study, we examined the roles of Rho-kinase in cytokinesis, in particular organization of glial filaments during cytokinesis. Expression of the dominant-negative form of Rho-kinase inhibited the cytokinesis of Xenopus embryo and mammalian cells, the result being production of multinuclei. We then constructed a series of mutant GFAPs, where Rho-kinase phosphorylation sites were variously mutated, and expressed them in type III IF-negative cells. The mutations induced impaired segregation of glial filament (GFAP filament) into postmitotic daughter cells. As a result, an unusually long bridge-like cytoplasmic structure formed between the unseparated daughter cells. Alteration of other sites, including the cdc2 kinase phosphorylation site, led to no remarkable defect in glial filament separation. These results suggest that Rho-kinase is essential not only for actomyosin regulation but also for segregation of glial filaments into daughter cells which in turn ensures correct cytokinetic processes.


Intermediate filament-membrane attachments function synergistically with actin-dependent contacts to regulate intercellular adhesive strength.

  • Arthur C Huen‎ et al.
  • The Journal of cell biology‎
  • 2002‎

By tethering intermediate filaments (IFs) to sites of intercellular adhesion, desmosomes facilitate formation of a supercellular scaffold that imparts mechanical strength to a tissue. However, the role IF-membrane attachments play in strengthening adhesion has not been directly examined. To address this question, we generated Tet-On A431 cells inducibly expressing a desmoplakin (DP) mutant lacking the rod and IF-binding domains (DPNTP). DPNTP localized to the plasma membrane and led to dissociation of IFs from the junctional plaque, without altering total or cell surface distribution of adherens junction or desmosomal proteins. However, a specific decrease in the detergent-insoluble pool of desmoglein suggested a reduced association with the IF cytoskeleton. DPNTP-expressing cell aggregates in suspension or substrate-released cell sheets readily dissociated when subjected to mechanical stress whereas controls remained largely intact. Dissociation occurred without lactate dehydrogenase release, suggesting that loss of tissue integrity was due to reduced adhesion rather than increased cytolysis. JD-1 cells from a patient with a DP COOH-terminal truncation were also more weakly adherent compared with normal keratinocytes. When used in combination with DPNTP, latrunculin A, which disassembles actin filaments and disrupts adherens junctions, led to dissociation up to an order of magnitude greater than either treatment alone. These data provide direct in vitro evidence that IF-membrane attachments regulate adhesive strength and suggest furthermore that actin- and IF-based junctions act synergistically to strengthen adhesion.


The intermediate filament protein peripherin is the specific interaction partner of mouse BPAG1-n (dystonin) in neurons.

  • C L Leung‎ et al.
  • The Journal of cell biology‎
  • 1999‎

The dystonia musculorum (dt) mouse suffers from severe degeneration of primary sensory neurons. The mutated gene product is named dystonin and is identical to the neuronal isoform of bullous pemphigoid antigen 1 (BPAG1-n). BPAG1-n contains an actin-binding domain at its NH2 terminus and a putative intermediate filament-binding domain at its COOH terminus. Because the degenerating sensory neurons of dt mice display abnormal accumulations of intermediate filaments in the axons, BPAG1-n has been postulated to organize the neuronal cytoskeleton by interacting with both the neurofilament triplet proteins (NFTPs) and microfilaments. In this paper we show by a variety of methods that the COOH-terminal tail domain of mouse BPAG1 interacts specifically with peripherin, but in contrast to a previous study (Yang, Y., J. Dowling, Q.C. Yu, P. Kouklis, D.W. Cleveland, and E. Fuchs. 1996. Cell. 86:655-665), mouse BPAG1 fails to associate with full-length NFTPs. The tail domains interfered with the association of the NFTPs with BPAG1. In dt mice, peripherin is present in axonal swellings of degenerating sensory neurons in the dorsal root ganglia and is downregulated even in other neural regions, which have no obvious signs of pathology. Since peripherin and BPAG1-n also display similar expression patterns in the nervous system, we suggest that peripherin is the specific interaction partner of BPAG1-n in vivo.


Binding of integrin alpha6beta4 to plectin prevents plectin association with F-actin but does not interfere with intermediate filament binding.

  • D Geerts‎ et al.
  • The Journal of cell biology‎
  • 1999‎

Hemidesmosomes are stable adhesion complexes in basal epithelial cells that provide a link between the intermediate filament network and the extracellular matrix. We have investigated the recruitment of plectin into hemidesmosomes by the alpha6beta4 integrin and have shown that the cytoplasmic domain of the beta4 subunit associates with an NH(2)-terminal fragment of plectin that contains the actin-binding domain (ABD). When expressed in immortalized plectin-deficient keratinocytes from human patients with epidermol- ysis bullosa (EB) simplex with muscular dystrophy (MD-EBS), this fragment is colocalized with alpha6beta4 in basal hemidesmosome-like clusters or associated with F-actin in stress fibers or focal contacts. We used a yeast two-hybrid binding assay in combination with an in vitro dot blot overlay assay to demonstrate that beta4 interacts directly with plectin, and identified a major plectin-binding site on the second fibronectin type III repeat of the beta4 cytoplasmic domain. Mapping of the beta4 and actin-binding sites on plectin showed that the binding sites overlap and are both located in the plectin ABD. Using an in vitro competition assay, we could show that beta4 can compete out the plectin ABD fragment from its association with F-actin. The ability of beta4 to prevent binding of F-actin to plectin explains why F-actin has never been found in association with hemidesmosomes, and provides a molecular mechanism for a switch in plectin localization from actin filaments to basal intermediate filament-anchoring hemidesmosomes when beta4 is expressed. Finally, by mapping of the COOH-terminally located binding site for several different intermediate filament proteins on plectin using yeast two-hybrid assays and cell transfection experiments with MD-EBS keratinocytes, we confirm that plectin interacts with different cytoskeletal networks.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: