Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 30 papers

Mangiferin alleviates experimental peri-implantitis via suppressing interleukin-6 production and Toll-like receptor 2 signaling pathway.

  • Hao Li‎ et al.
  • Journal of orthopaedic surgery and research‎
  • 2019‎

TLR2 (Toll-like receptor 2) signaling and its downstream proinflammatory cytokines are considered to be important in the progression of peri-implantitis. A natural medicine, mangiferin has exhibited modulatory effect on TLR2 signaling and anti-inflammatory effects on different diseases. The objective of the present study is to investigate the effect of mangiferin on peri-implantitis and the potential mechanisms by administering this drug to an experimental peri-implantitis mouse model.


Impact of interleukin-6 gene polymorphisms and its interaction with obesity on osteoporosis risk in Chinese postmenopausal women.

  • Ya-Feng Ji‎ et al.
  • Environmental health and preventive medicine‎
  • 2019‎

To investigate the association of four single-nucleotide polymorphisms (SNPs) of the IL-6 gene with osteoporosis (OST) susceptibility.


1,25-dihydroxyvitamin D3 suppresses lipopolysaccharide-induced interleukin-6 production through aryl hydrocarbon receptor/nuclear factor-κB signaling in oral epithelial cells.

  • Hao Li‎ et al.
  • BMC oral health‎
  • 2019‎

Antiinflammatory effect of 1,25-dihydroxyvitamin D3 (1,25D3) has been reported in periodontitis, but the exact mechanisms remain unclear. Oral epithelial cells are recently highlighted as an important regulator of inflammation in this disease. This in vitro study was established to investigate the effect of 1,25D3 on key proinflammatory cytokine IL-6 production and aryl hydrocarbon receptor (AhR)/nuclear factor-κB (NF-κB) signaling in oral epithelial cells upon the stimulation of lipopolysaccharide (LPS) from periodontal pathogens.


A novel mechanism by which SDF-1β protects cardiac cells from palmitate-induced endoplasmic reticulum stress and apoptosis via CXCR7 and AMPK/p38 MAPK-mediated interleukin-6 generation.

  • Yuguang Zhao‎ et al.
  • Diabetes‎
  • 2013‎

We studied the protective effect of stromal cell-derived factor-1β (SDF-1β) on cardiac cells from lipotoxicity in vitro and diabetes in vivo. Exposure of cardiac cells to palmitate increased apoptosis by activating NADPH oxidase (NOX)-associated nitrosative stress and endoplasmic reticulum (ER) stress, which was abolished by pretreatment with SDF-1β via upregulation of AMP-activated protein kinase (AMPK)-mediated p38 mitogen-activated protein kinase (MAPK) phosphorylation and interleukin-6 (IL-6) production. The SDF-1β cardiac protection could be abolished by inhibition of AMPK, p38 MAPK, or IL-6. Activation of AMPK or addition of recombinant IL-6 recaptured a similar cardiac protection. SDF-1β receptor C-X-C chemokine receptor type 4 (CXCR4) antagonist AMD3100 or CXCR4 small interfering RNA could not, but CXCR7 small interfering RNA completely abolished SDF-1β's protection from palmitate-induced apoptosis and activation of AMPK and p38 MAPK. Administration of SDF-1β to diabetic rats, induced by feeding a high-fat diet, followed by a small dose of streptozotocin, could significantly reduce cardiac apoptosis and increase AMPK phosphorylation along with prevention of diabetes-induced cardiac oxidative damage, inflammation, hypertrophy, and remodeling. These results showed that SDF-1β protects against palmitate-induced cardiac apoptosis, which is mediated by NOX-activated nitrosative damage and ER stress, via CXCR7, to activate AMPK/p38 MAPK-mediated IL-6 generation. The cardiac protection by SDF-1β from diabetes-induced oxidative damage, cell death, and remodeling was also associated with AMPK activation.


Hypoxia Induces Drug Resistance in Colorectal Cancer through the HIF-1α/miR-338-5p/IL-6 Feedback Loop.

  • Ke Xu‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2019‎

Hypoxia is associated with poor prognosis and therapeutic resistance in cancer patients. Accumulating evidence has shown that microRNA (miRNA) plays an important role in the acquired drug resistance in colorectal carcinoma (CRC). However, the role of miRNA in hypoxia-induced CRC drug resistance remains to be elucidated. Here, we identified a hypoxia-triggered feedback loop that involves hypoxia-inducible transcription factor 1α (HIF-1α)-mediated repression of miR-338-5p and confers drug resistance in CRC. In this study, the unbiased miRNA array screening revealed that miR-338-5p is downregulated in both hypoxic CRC cell lines tested. Repression of miR-338-5p was required for hypoxia-induced CRC drug resistance. Furthermore, we identified interleukin-6 (IL-6), which mediates STAT3/Bcl2 activation under hypoxic conditions, as a direct miR-338-5p target. The resulting HIF-1α/miR-338-5p/IL-6 feedback loop was necessary for drug resistance in colon cancer cell lines. Using CRC patient samples, we found miR-338-5p has a negative correlation with HIF-1α and IL-6. Finally, in a xenograft model, overexpressing miR-338-5p in CRC cells and HIF-1α inhibitor PX-478 were able to enhance the sensitivity of CRC to oxaliplatin (OXA) via suppressing the HIF-1α/miR-338-5p/IL-6 feedback loop in vivo. Taken together, our results uncovered an HIF-1α/miR-338-5p/IL-6 feedback circuit that is critical in hypoxia-mediated drug resistance in CRC; targeting each member of this feedback loop could potentially reverse hypoxia-induced drug resistance in CRC.


Tumor-derived mesenchymal-stem-cell-secreted IL-6 enhances resistance to cisplatin via the STAT3 pathway in breast cancer.

  • Huitao Xu‎ et al.
  • Oncology letters‎
  • 2018‎

Cisplatin is used for the treatment of a range of solid malignant tumors; however, with prolonged treatment durations, the sensitivity of tumor cells to the drug decreases owing to an unclear mechanism of drug resistance. The present study aimed to investigate whether breast-cancer-tissue-derived mesenchymal stem cells (BC-MSCs) are involved in mediating the effects of cisplatin on breast cancer cells, and which component of the BC-MSC conditioned medium (BC-MSC-CM) exhibited an anti-apoptotic effect. Cytokines/chemokines in BC-MSC-CM were quantified using a Luminex immunoassay, and reverse transcription-quantitative polymerase chain reaction analysis detected interleukin-6 (IL-6) levels in MCF-7 cells following different treatments. MTT and flow cytometry analysis measured cell vitality and apoptosis, respectively, and activation of signal transduced and activator of transcription 3 (STAT3) was evaluated by western blotting. BC-MSCs reversed the pro-apoptotic effect of cisplatin and enhanced the proliferation of MCF-7 cells more potently than bone-marrow-derived MSCs. Further study revealed that BC-MSCs secreted IL-6 to protect MCF-7 cells from apoptosis and promote their survival. Neutralizing IL-6 with a specific antibody partially inhibited the IL-6/STAT3 signaling pathway and reversed the promoter role of BC-MSCs in MCF-7 cells. Taken together, the findings of the present study indicated that BC-MSCs decreased the level of cisplatin-induced apoptosis in MCF-7 cells by activating the IL-6/STAT3 pathway in cancer cells. BC-MSCs, as important cells in the tumor microenvironment, have a key role in the treatment of breast cancer.


Effects of various degrees of esterification on antioxidant and immunostimulatory activities of okra pectic-polysaccharides.

  • Wei Li‎ et al.
  • Frontiers in nutrition‎
  • 2022‎

Pectic-polysaccharides are considered as one of the most abundant bioactive components in okra, which possess various promising health-promoting effects. However, the knowledge regarding the structure-bioactivity relationship of okra pectic-polysaccharides (OPP) is still limited. In this study, effects of various degrees of esterification (DEs) on in vitro antioxidant and immunostimulatory activities of OPP were analyzed. Results displayed that OPP with high (42.13%), middle (25.88%), and low (4.77%) DE values were successfully prepared by mild alkaline de-esterification, and their primary chemical structures (compositional monosaccharide and glycosidic linkage) and molecular characteristics (molecular weight distribution, particle size, and rheological property) were overall stable. Additionally, results showed that the notable decrease of DE value did not significantly affect antioxidant activities [2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) and nitric oxide (NO) radical scavenging abilities as well as ferric reducing antioxidant power (FRAP)] of OPP, suggesting that the DE was not closely related to its antioxidant activity. In fact, the slight decrease of antioxidant activity of OPP after the alkaline de-esterification might be attributed to the slight decrease of uronic acid content. Nevertheless, the immunostimulatory effect of OPP was closely related to its DE, and a suitable degree of acetylation was beneficial to its in vitro immunostimulatory effect. Besides, the complete de-acetylation resulted in a remarkable reduction of immune response. The findings are beneficial to better understanding the effect of DE value on antioxidant and immunomodulatory activities of OPP, which also provide theoretical foundations for developing OPP as functional foods or health products.


Pharmacometabolomic prediction of individual differences of gastrointestinal toxicity complicating myelosuppression in rats induced by irinotecan.

  • Yiqiao Gao‎ et al.
  • Acta pharmaceutica Sinica. B‎
  • 2019‎

Pharmacometabolomics has been already successfully used in toxicity prediction for one specific adverse effect. However in clinical practice, two or more different toxicities are always accompanied with each other, which puts forward new challenges for pharmacometabolomics. Gastrointestinal toxicity and myelosuppression are two major adverse effects induced by Irinotecan (CPT-11), and often show large individual differences. In the current study, a pharmacometabolomic study was performed to screen the exclusive biomarkers in predose serums which could predict late-onset diarrhea and myelosuppression of CPT-11 simultaneously. The severity and sensitivity differences in gastrointestinal toxicity and myelosuppression were judged by delayed-onset diarrhea symptoms, histopathology examination, relative cytokines and blood cell counts. Mass spectrometry-based non-targeted and targeted metabolomics were conducted in sequence to dissect metabolite signatures in predose serums. Eventually, two groups of metabolites were screened out as predictors for individual differences in late-onset diarrhea and myelosuppression using binary logistic regression, respectively. This result was compared with existing predictors and validated by another independent external validation set. Our study indicates the prediction of toxicity could be possible upon predose metabolic profile. Pharmacometabolomics can be a potentially useful tool for complicating toxicity prediction. Our findings also provide a new insight into CPT-11 precision medicine.


Glycyrrhizin regulates rat TMJOA progression by inhibiting the HMGB1-RAGE/TLR4-NF-κB/AKT pathway.

  • Zhihui Hu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2022‎

To investigate the role of glycyrrhizin on the progression of temporomandibular joint osteoarthritis (TMJOA) and the underlying mechanism by regulation of the high-mobility group box 1 (HMGB1) receptor for advanced glycation end products (RAGE)/toll-like receptor 4 (TLR4)-nuclear factor kappa B (NF-κB)/protein kinase B (AKT) pathway. After a rat model of TMJOA was built by intra-articular injection of monosodium iodoacetate, glycyrrhizin was intragastrically administered at low concentration (20 mg/kg) or high concentration (50 mg/kg). Micro-computed tomography, histological and immunohistochemical analysis were used to reveal the progression of TMJOA. Rat TMJ chondrocytes and disc cells were cultured in inflammatory condition with different doses of glycyrrhizin. Western blot was used to evaluate the effect of glycyrrhizin on the HMGB1-RAGE/TLR4-NF-κB/AKT pathway. Administration of glycyrrhizin alleviated cartilage degeneration, lowered the levels of inflammatory and catabolic mediators and reduced the production of HMGB1, RAGE and TLR4 in TMJOA animal model. Increased production of RAGE and TLR4, and activated intracellular NF-κB and/or AKT signalling pathways in chondrocytes and disc cells were found in inflammatory condition. Upon activation, matrix metalloprotease-3 and interleukin-6 were upregulated. Glycyrrhizin inhibited not only HMGB1 release but also RAGE and TLR4 in inflammatory condition. Glycyrrhizin alleviated the pathological changes of TMJOA by regulating the HMGB1-RAGE/TLR4-NF-kB/AKT signalling pathway. This study revealed the potential of glycyrrhizin as a novel therapeutic drug to suppress TMJ cartilage degradation.


Loss of Wwox drives metastasis in triple-negative breast cancer by JAK2/STAT3 axis.

  • Renxu Chang‎ et al.
  • Nature communications‎
  • 2018‎

Loss of WW domain-containing oxidoreductase (Wwox) expression has been observed in breast cancer (BC). However, its regulatory effects are largely unknown, especially in triple-negative breast cancer (TNBC). Herein, gene expression profiling revealed that JAK/STAT3 pathway was one of the most differentially modulated pathways in basal-like BC cells. The lower expression of Wwox was significantly correlated with high activation of STAT3 in basal-like cells and TNBC tissues. Overexpression of Wwox markedly inhibited proliferation and metastasis of BC cells by suppressing STAT3 activation, which is to interact with JAK2 to inhibit JAK2 and STAT3 phosphorylation. Furthermore, Wwox limited STAT3 binding to the interleukin-6 promoter, repressing expression of the IL-6 cytokine. Altogether, our data established that Wwox suppresses BC cell metastasis and proliferation by JAK2/STAT3 pathway. Targeting of Wwox with STAT3 could offer a promising therapeutic strategy for TNBC.


Purification and Characterization of a Novel Pentadecapeptide from Protein Hydrolysates of Cyclina sinensis and Its Immunomodulatory Effects on RAW264.7 Cells.

  • Wei Li‎ et al.
  • Marine drugs‎
  • 2019‎

In the present study, peptide fractions of Cyclina sinensis hydrolysates, with molecular weight (MW) < 3 kDa and highest relative proliferation rate of murine macrophage cell line RAW 264.7, were purified by a series of chromatographic purification methods, to obtain peptide fractions with immunomodulatory activity. The amino acid sequence of the peptide was identified to be Arg-Val-Ala-Pro-Glu-Glu-His-Pro-Val-Glu-Gly-Arg-Tyr-Leu-Val (RVAPEEHPVEGRYLV) with MW of 1750.81 Da, and the novel pentadecapeptide (named SCSP) was synthesized for subsequent immunomodulatory activity experiments. Results showed the SCSP enhanced macrophage phagocytosis, increased productions of nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β), and up-regulated the protein level of inducible nitric oxide synthase (iNOS), nuclear factor κB (NF-κB), and NOD-like receptor protein 3 (NLRP3) in RAW 264.7 cells. Furthermore, the expression of inhibitor of nuclear factor κB-α (IκB-α) was down-regulated. These findings suggest that SCSP might stimulate macrophage activities by activating the NF-κB signaling pathway and can be used as a potential immunomodulatory agent in functional food or medicine.


Upregulation of flavin-containing monooxygenase 3 mimics calorie restriction to retard liver aging by inducing autophagy.

  • Donghao Guo‎ et al.
  • Aging‎
  • 2020‎

Flavin-containing monooxygenase 3 (FMO3) gene expression is often upregulated in long-lived murine models. However, the specific relationship between FMO3 and aging remains unknown. Here, we show that 40% calorie restriction (CR), which is considered to be one of the most robust interventions to delay aging progression, markedly upregulates FMO3. Most importantly, upregulation of hepatocyte FMO3 in murine models prevented or reversed hepatic aging. Accordingly, the upregulation of FMO3 mimicked the effects of CR: reduced serum levels of pro-inflammatory cytokine interleukin-6 and fasting insulin; relief of oxidative stress, with lower hepatic malondialdehyde levels and higher superoxide dismutase activity; reduced serum and hepatic levels of total cholesterol and triglyceride, as well as reduced lipid deposition in the liver; and diminished levels of aging-related markers β-gal and p16. There were also synergistic effects between FMO3 upregulation and CR. Inhibition of autophagy blocked the anti-aging effects of upregulation of hepatocyte FMO3, including reversing the amelioration of the serum and hepatic parameters related to inflammation, oxidative stress, lipid metabolism, liver function, and hepatocyte senescence. Our results suggest that the upregulation of FMO3 mimics CR to prevent or reverse hepatic aging by promoting autophagy.


Anti-Tumor Effect of Steamed Codonopsis lanceolata in H22 Tumor-Bearing Mice and Its Possible Mechanism.

  • Wei Li‎ et al.
  • Nutrients‎
  • 2015‎

Although previous studies confirmed that steaming and the fermentation process could significantly improve the cognitive-enhancement and neuroprotective effects of Codonopsis lanceolata, the anti-tumor efficacy of steamed C. lanceolata (SCL) and what mechanisms are involved remain largely unknown. The present study was designed to evaluate the anti-tumor effect in vivo of SCL in H22 tumor-bearing mice. The results clearly indicated that SCL could not only inhibit the tumor growth, but also prolong the survival time of H22 tumor-bearing mice. Besides, the serum levels of cytokines, such as interferon gamma (IFN-γ), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-2 (IL-2), were enhanced by SCL administration. The observations of Hoechst 33258 staining demonstrated that SCL was able to induce tumor cell apoptosis. Finally, immunohistochemical analysis revealed that SCL treatment significantly increased Bax expression and decreased Bcl-2 and vascular endothelial growth factor (VEGF) expression of H22 tumor tissues in a dose-dependent manner. Moreover, LC/MS analysis of SCL indicated that it mainly contained lobetyolin and six saponins. Taken all together, the findings in the present study clearly demonstrated that SCL inhibited the H22 tumor growth in vivo at least partly via improving the immune functions, inducing apoptosis and inhibiting angiogenesis.


Curcumin Suppresses Hepatic Stellate Cell-Induced Hepatocarcinoma Angiogenesis and Invasion through Downregulating CTGF.

  • Shan Shao‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2019‎

Microenvironment plays a vital role in tumor progression; we focused on elucidating the role of hepatic stellate cells (HSCs) in hepatocarcinoma (HCC) aggressiveness and investigated the potential protective effect of curcumin on HSC-driven hepatocarcinoma angiogenesis and invasion. Our data suggest that HSCs increase HCC reactive oxygen species (ROS) production to upregulate hypoxia-inducible factor-1α (HIF-1α) expression to promote angiogenesis, epithelial to mesenchymal transition (EMT) process and invasion. And HSCs could secrete soluble factors, such as interleukin-6 (IL-6), vascular endothelial cell growth factor (VEGF), and stromal-derived factor-1 (SDF-1) to facilitate HCC progression. Curcumin could significantly suppress the above HSC-induced effects in HCC and could abrogate ROS and HIF-1α expression in HCC. HIF-1α or connective tissue growth factor (CTGF) knockdown could abolish the aforementioned curcumin affection. Moreover, CTGF is a downstream gene of HIF-1α. In addition, nuclear factor E2-related factor 2 (Nrf2) and glutathione (GSH) are involved in curcumin protection of HCC. These data indicate that curcumin may induce ROS scavenging by upregulating Nrf2 and GSH, thus inhibiting HIF-1α stabilization to suppress CTGF expression to exhibit its protection on HCC. Curcumin has a promising therapeutic effect on HCC. CTGF is responsible for curcumin-induced protection in HCC.


Maresin 1, a Proresolving Lipid Mediator, Mitigates Carbon Tetrachloride-Induced Liver Injury in Mice.

  • Ruidong Li‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2016‎

Maresin 1 (MaR 1) was recently reported to have protective properties in several different animal models of acute inflammation by inhibiting inflammatory response. However, its function in acute liver injury is still unknown. To address this question, we induced liver injury in BALB/c mice with intraperitoneal injection of carbon tetrachloride with or without treatment of MaR 1. Our data showed that MaR 1 attenuated hepatic injury, oxidative stress, and lipid peroxidation induced by carbon tetrachloride, as evidenced by increased thiobarbituric acid reactive substances and reactive oxygen species levels were inhibited by treatment of MaR 1. Furthermore, MaR 1 increased activities of antioxidative mediators in carbon tetrachloride-treated mice liver. MaR 1 decreased indices of inflammatory mediators such as tumor necrosis factor-α, interleukin-6, interleukin-1β, monocyte chemotactic protein 1, myeloperoxidase, cyclooxygenase-2, and inducible nitric oxide synthase. Administration of MaR 1 inhibited activation of nuclear factor kappa B (NF-κb) and mitogen-activated protein kinases (MAPKs) in the liver of CCl4 treated mice. In conclusion, these results suggested the antioxidative, anti-inflammatory properties of MaR 1 in CCl4 induced liver injury. The possible mechanism is partly implicated in its abilities to inhibit ROS generation and activation of NF-κb and MAPK pathway.


Silencing of the STAT3 signaling pathway reverses the inherent and induced chemoresistance of human ovarian cancer cells.

  • Zhiqiang Han‎ et al.
  • Biochemical and biophysical research communications‎
  • 2013‎

Ovarian cancer is the leading cause of gynecologic cancer deaths among women. Although platinum-based chemotherapy is the first-line treatment for human ovarian cancer, chemoresistance remains a major obstacle to successful treatment, and there are currently no approved molecularly targeted therapies. Recent evidence indicates that signal transducer and activator of transcription-3 (STAT3) is a determinant of chemoresistance and is related to tumor recurrence in a large number of solid malignancies. In this study, we demonstrated that high levels of pSTAT3 were associated with chemoresistance in human ovarian cancer cells. Targeting STAT3 by siRNA technology markedly enhanced cisplatin-induced apoptosis in cisplatin-resistant ovarian cancer cells that expressed a high level of pSTAT3. Interleukin-6 (IL-6) could induce STAT3 activation in cisplatin-sensitive ovarian cancer cells and led to protection against cisplatin. The STAT3 siRNA treatment also blocked IL-6-induced STAT3 phosphorylation, resulting in the attenuation of the anti-apoptotic activity of IL-6. We found that the combination of cisplatin and STAT3 siRNA resulted in the collapse of the mitochondrial membrane potential, attenuated the expression of Bcl-xL and Bcl-2, and increased the release of cytochrome C and expression of Bax. Taken together, these results suggest that the pharmacological inhibition of STAT3 may be a promising therapeutic strategy for the management of chemoresistance in ovarian cancer.


Pro-inflammatory microenvironment and systemic accumulation of CXCR3+ cell exacerbate lung pathology of old rhesus macaques infected with SARS-CoV-2.

  • Hong-Yi Zheng‎ et al.
  • Signal transduction and targeted therapy‎
  • 2021‎

Understanding the pathological features of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in an animal model is crucial for the treatment of coronavirus disease 2019 (COVID-19). Here, we compared immunopathological changes in young and old rhesus macaques (RMs) before and after SARS-CoV-2 infection at the tissue level. Quantitative analysis of multiplex immunofluorescence staining images of formalin-fixed paraffin-embedded (FFPE) sections showed that SARS-CoV-2 infection specifically induced elevated levels of apoptosis, autophagy, and nuclear factor kappa-B (NF-κB) activation of angiotensin-converting enzyme 2 (ACE2)+ cells, and increased interferon α (IFN-α)- and interleukin 6 (IL-6)-secreting cells and C-X-C motif chemokine receptor 3 (CXCR3)+ cells in lung tissue of old RMs. This pathological pattern, which may be related to the age-related pro-inflammatory microenvironment in both lungs and spleens, was significantly correlated with the systemic accumulation of CXCR3+ cells in lungs, spleens, and peripheral blood. Furthermore, the ratio of CXCR3+ to T-box protein expression in T cell (T-bet)+ (CXCR3+/T-bet+ ratio) in CD8+ cells may be used as a predictor of severe COVID-19. These findings uncovered the impact of aging on the immunopathology of early SARS-CoV-2 infection and demonstrated the potential application of CXCR3+ cells in predicting severe COVID-19.


High-mobility group box 1 promotes epithelial-to-mesenchymal transition in crystalline silica induced pulmonary inflammation and fibrosis.

  • Jixuan Ma‎ et al.
  • Toxicology letters‎
  • 2020‎

Silicosis is an inflammatory and fibrotic lung disease caused by prolonged inhalation of silica. The potential role of high-mobility group box-1 (HMGB-1) and its underlying mechanisms in silicosis remain unclear. In this study, intratracheal instillation of a silica suspension was used to establish silicosis in male C57BL/6 mice. To elucidate the effects of HMGB-1 on the pathogenesis of silicosis, we used HMGB-1 neutralizing antibody (anti-HMGB-1) and recombinant HMGB-1 (rmHMGB-1) to abrogate or increase the HMGB-1 levels, respectively. At days 7, 28, and 84, the accumulation of macrophages and neutrophils decreased by anti-HMGB-1 treatment. The expression levels of interleukin-6 and tumor necrosis factor-α in lung increased in response to silica exposure across three time points; anti-HMGB-1 could alleviate those expressions at day 28 and 84. In contrast, rmHMGB-1 aggravated this process. At days 28 and 84, the protein expression of fibronectin and col1a1 decreased in the silica + anti-HMGB-1 groups but increased in silica + rmHMGB-1 groups compared to mice with silica alone. Further study suggested that HMGB-1-mediated epithelial-mesenchymal transition participated in the development of silicosis. In conclusion, the findings demonstrate that HMGB-1 participates in the pathogenesis of silicosis and may represent a potential therapeutic target for the treatment of silicosis.


Efficacy and follow-up of humanized anti-BCMA CAR-T cell therapy in relapsed/refractory multiple myeloma patients with extramedullary-extraosseous, extramedullary-bone related, and without extramedullary disease.

  • Wei Li‎ et al.
  • Hematological oncology‎
  • 2022‎

The prognosis of patients with multiple myeloma (MM) with extramedullary disease (EMD) remains poor. A high overall response rate (ORR) has been reported following anti-B-cell maturation antigen (BCMA) chimeric antigen receptor (CAR)-T cell therapy in relapsed/refractory (R/R) patients with MM; however, data on patients with EMD remain limited. Herein, we compared and analyzed the efficacy and long-term follow-up of anti-BCMA CAR-T cell therapy in R/R MM patients with extramedullary-extraosseous (EM-E), extramedullary-bone related (EM-B), and without extramedullary disease. No difference in the ORR was observed between the three groups. The long-term efficacy of anti-BCMA CAR-T cell therapy in the EM-E group was worse than that in patients without EMD and with EM-B. In the EM-E group, disease progression was the reappearance of extramedullary lesions without an increase in the MM cell percentage or M protein level. Although no difference in the proportion of CAR-T cells was detected among the three groups, the EM-E group might exhibit a relatively high grade of cytokine release syndrome following anti-BCMA CAR-T therapy. Interleukin-6 levels in the without EMD group were lower than those in the EM-E and EM-B groups. However, given the small number of cases in the three groups, statistical analysis was not performed.(ChiCTR1800017051 and ChiCTR2000033925).


Beneficial effects of extracts from Lucilia sericata maggots on burn wounds in rats.

  • Haixu Bian‎ et al.
  • Molecular medicine reports‎
  • 2017‎

Lucilia sericata maggots have beneficial properties; however, their protective effects on burn wounds have yet to be fully elucidated. In the present study, a deep second‑degree burn rat model was used to investigate the burn wound healing properties of aqueous extract of maggots (MAE). The anti‑inflammatory, antioxidative and antibacterial activities were examined. In addition, the protein expression levels of Akt, vascular endothelial growth factor A (VEGFA) and nuclear factor‑κB (NF‑κB) were detected by western blotting. The findings of the present study revealed that MAE treatment increased burn wound healing and hydroxyproline content in the burn‑treated rats. A total of seven compounds (MAE‑P1‑P7) were separated from MAE and a comparative study was performed to identify the major active component. The results demonstrated that MAE‑P6 exerted greater antibacterial activity compared with the other compounds. MAE‑P6 treatment reduced tissue levels of malondialdehyde, tumor necrosis factor‑α and interleukin‑6, and increased superoxide dismutase activity. Furthermore, MAE‑P6 increased the expression levels of VEGFA and reduced NF‑κB expression through Akt, which was verified by treatment with the Akt‑specific inhibitor, LY294002. In conclusion, the present study demonstrated that the beneficial effects of MAE on burn wound healing were due to its antibacterial, antioxidative and anti‑inflammatory activities. MAE‑P6 reduced the release of inflammatory cytokines via the Akt/NF‑κB signaling pathway, and regulated angiogenesis and vasopermeability via the Akt/VEGFA pathway.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: