Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 14 papers out of 14 papers

Prophylactic use of interleukin 6 monoclonal antibody can reduce CRS response of CAR-T cell therapy.

  • Baitao Dou‎ et al.
  • Frontiers in medicine‎
  • 2023‎

Chimeric antigen receptor T (CAR-T) cell immunotherapy is becoming one of the most promising treatments for hematological malignancies, however, complications such as cytokine release syndrome (CRS) seriously threaten the lives of patients. Interleukin 6(IL-6) monoclonal antibody is the common and useful treatment of CRS, however, it is not clear whether prophylactic use IL-6 monoclonal antibody before CAR-T therapy can reduce the incidence of CRS.


Palmitic acid induces production of proinflammatory cytokines interleukin-6, interleukin-1β, and tumor necrosis factor-α via a NF-κB-dependent mechanism in HaCaT keratinocytes.

  • Bing-rong Zhou‎ et al.
  • Mediators of inflammation‎
  • 2013‎

To investigate whether palmitic acid can be responsible for the induction of inflammatory processes, HaCaT keratinocytes were treated with palmitic acid at pathophysiologically relevant concentrations. Secretion levels of interleukin-6 (IL-6), tumor necrosis factor- α (TNF- α), interleukin-1 β (IL-1 β), NF- κ B nuclear translocation, NF- κ B activation, Stat3 phosphorylation, and peroxisome proliferator-activated receptor alpha (PPAR α) mRNA and protein levels, as well as the cell proliferation ability were measured at the end of the treatment and after 24 hours of recovery. Pyrrolidine dithiocarbamate (PDTC, a selective chemical inhibitor of NF- κ B) and goat anti-human IL-6 polyclonal neutralizing antibody were used to inhibit NF- κ B activation and IL-6 production, respectively. Our results showed that palmitic acid induced an upregulation of IL-6, TNF- α , IL-1 β secretions, accompanied by NF- κ B nuclear translocation and activation. Moreover, the effect of palmitic acid was accompanied by PPAR α activation and Stat3 phosphorylation. Palmitic acid-induced IL-6, TNF- α , IL-1 β productions were attenuated by NF- κ B inhibitor PDTC. Palmitic acid was administered in amounts able to elicit significant hyperproliferation and can be attenuated by IL-6 blockage. These data demonstrate for the first time that palmitic acid can stimulate IL-6, TNF- α , IL-1 β productions in HaCaT keratinocytes and cell proliferation, thereby potentially contributing to acne inflammation and pilosebaceous duct hyperkeratinization.


Maternal sitagliptin treatment attenuates offspring glucose metabolism and intestinal proinflammatory cytokines IL-6 and TNF-α expression in male rats.

  • Qian Zhang‎ et al.
  • PeerJ‎
  • 2020‎

Increasing evidence shows that maternal overnutrition may increase the risk of diabetes in offspring. We hypothesized that maternal sitagliptin intervention may improve glucose intolerance through gut targeting. Female Sprague-Dawley (SD) rats were fed a normal diet (ND) or a high-fat diet (HFD) for 4 weeks before mating. ND pregnant rats were divided into two subgroups: ND group (ND alone) and the ND-sitagliptin group (ND combined with 10 mg/kg/day sitagliptin treatment). HFD pregnant rats were randomized to one of two groups: HFD group (HFD alone) and the HFD-sitagliptin group (HFD combined with 10 mg/kg/day sitagliptin treatment) during pregnancy and lactation. Glucose metabolism was assessed in offspring at weaning. Intestinal gene expression levels were investigated. Maternal sitagliptin intervention moderated glucose intolerance and insulin resistance in male pups. Moreover, maternal sitagliptin treatment inhibited offspring disordered intestinal expression of proinflammatory markers, including interleukin-6 (Il6), ll1b, and tumor necrosis factor (Tnf), at weaning and reduced intestinal IL-6, TNF-α expression by immunohistochemical staining and serum IL-6, TNF-α levels. However, maternal sitagliptin intervention did not affect offspring serum anti-inflammatory cytokine IL-10 level. Our results are the first to show that maternal sitagliptin intervention moderated glucose metabolism in male offspring. It may be involved with moderating intestinal IL-6 and TNF-α expression in male rat offspring.


CCAAT/enhancer-binding protein (C/EBP) homologous protein promotes alveolar epithelial cell senescence via the nuclear factor-kappa B pathway in pulmonary fibrosis.

  • Xiaoyan Jing‎ et al.
  • The international journal of biochemistry & cell biology‎
  • 2022‎

Alveolar epithelial cell senescence is a core event in the development of pulmonary fibrosis. Endoplasmic reticulum stress accelerates cellular senescence significantly; however, whether this stress promotes alveolar epithelial cell senescence in pulmonary fibrosis and its mechanisms are unclear. As a common intersection of endoplasmic reticulum stress signaling pathways, CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) activates the oxidative stress pathway, which in turn accelerates cellular senescence. Therefore, we speculated CHOP pathway activation would affect endoplasmic reticulum stress-induced alveolar epithelial cell senescence in pulmonary fibrosis. In this study, we observed that alveolar epithelial cell senescence was accompanied by CHOP overexpression in idiopathic pulmonary fibrosis lung tissues. Bleomycin and tunicamycin combination models in vivo and in vitro showed that CHOP downregulation rescued alveolar epithelial cell senescence, reduced fibroblast activation mediated by the senescence-associated secretory phenotype, and improved pulmonary fibrosis pathology. Mechanistic studies showed that CHOP accelerated alveolar epithelial cell senescence by promoting reactive oxygen species generation, which activated the nuclear factor-kappa B pathway. Our study suggested that CHOP activates the downstream nuclear factor-kappa B pathway, thus contributing to endoplasmic reticulum stress-induced alveolar epithelial cell senescence and pulmonary fibrosis.


Antioxidative and Anti-Inflammatory Effects of Water Extract of Acrostichum aureum Linn. against Ethanol-Induced Gastric Ulcer in Rats.

  • Xue Wu‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2018‎

Acrostichum aureum Linn., a medicinal pteridophyte growing in mangrove forests and coastal regions of tropical and subtropical areas worldwide, has been proved to possess various biological effects. However, the protective effect of Acrostichum aureum Linn. against gastric ulcer still remains unidentified. Therefore, the gastroprotective effect of the water extract of Acrostichum aureum Linn. (WEAC) was investigated in ethanol-induced gastric injury model. According to our results, pretreatment with WEAC (100, 200, and 400 mg/kg) could dramatically decrease the ulcer areas and ameliorate the pathological damage induced by alcohol in rat's gastric tissues. In addition, WEAC administration prevented the stomach from oxidative damage via markedly increasing the levels of glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and decreasing the malondialdehyde (MDA). Besides, WEAC pretreatment alleviated inflammatory infiltration by reducing the secretion of proinflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) as well as decreasing the protein expressions of phosphorylation of IκBα and p65. Taken together, WEAC exerted potential therapeutic efficacy for gastric ulceration, and this may be involved in the suppression of oxidative stress and inflammatory response.


Apremilast ameliorates ox-LDL-induced endothelial dysfunction mediated by KLF6.

  • Hao Wang‎ et al.
  • Aging‎
  • 2020‎

Apremilast is a phosphodiesterase 4 (PDE4) inhibitor used in the treatment of psoriasis and several other inflammatory diseases. Interest has been expressed in seeking out therapies that address both psoriasis and atherosclerosis. In the present study, we explored the effects of apremilast in human aortic endothelial cells (HAECs) exposed to oxidized low-density lipoprotein (ox-LDL) to simulate the atherosclerotic microenvironment in vitro. Our findings indicate that apremilast may reduce the expression of lectin-like oxidized-low-density-lipoprotein receptor-1 (LOX-1), the main ox-LDL scavenging receptor. Apremilast also inhibited the expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-8 (IL-8), which are deeply involved in the chronic inflammatory response associated with atherosclerosis. Interestingly, we found that apremilast inhibited the attachment of U937 monocytes to HAECs by reducing the expression of the chemokine monocyte chemotactic protein 1 (MCP-1) and the cellular adhesion molecule vascular cell adhesion molecule-1 (VCAM-1). This effect was found to be mediated through the rescue of Krüppel like factor 6 (KLF6) expression, which was reduced in response to ox-LDL via increased phosphorylation of c-Jun N-terminal kinase (JNK). These findings suggest a potential role for apremilast in the treatment of atherosclerosis.


Glycyrrhizic Acid Mitigates Tripterygium-Glycoside-Tablet-Induced Acute Liver Injury via PKM2 Regulated Oxidative Stress.

  • Qixin Wang‎ et al.
  • Metabolites‎
  • 2022‎

Tripterygium glycoside tablet (TGT), as a common clinical drug, can easily cause liver damage due to the narrow therapeutic window. Glycyrrhizic acid (GA) has a hepatoprotective effect, but the characteristics and mechanism of GA's impact on TGT-induced acute liver injury by regulating oxidative stress remain unelucidated. In this study, TGT-induced acute liver injury models were established in vitro and in vivo. The levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (AKP), superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), catalase (CAT), lactate dehydrogenase (LDH), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) were quantified. The anti-apoptotic effect of GA was tested using flow cytometry. Potential target proteins of GA were profiled via activity-based protein profiling (ABPP) using a cysteine-specific (IAA-yne) probe. The results demonstrate that GA markedly decreased the concentrations of ALT, AST, AKP, MDA, LDH, TNF-α, IL-1β and IL-6, whereas those of SOD, GSH and CAT increased. GA could inhibit TGT-induced apoptosis in BRL-3A cells. GA bound directly to the cysteine residue of PKM2. The CETSA and enzyme activity results validate the specific targets identified. GA could mitigate TGT-induced acute liver injury by mediating PKM2, reducing oxidative stress and inflammation and reducing hepatocyte apoptosis.


High-fat diet blunts T-cell responsiveness in Nile tilapia.

  • Kunming Li‎ et al.
  • Developmental and comparative immunology‎
  • 2022‎

The reduced stress resistance and increased disease risk associated with high-fat diet (HFD) in animals have attracted increasing attention. However, the effects of HFD on adaptive immunity in early vertebrates, especially non-tetrapods, remain unknown. In this study, using Nile tilapia (Oreochromis niloticus) as a model, we investigated the effects of HFD on the primordial T-cell response in fish. Tilapia fed with an HFD for 8 weeks showed impaired lymphocyte homeostasis in the spleen, as indicated by the decreased number of both T and B lymphocytes and increased transcription of proinflammatory cytokines interferon-γ and interleukin-6. Moreover, lymphocytes isolated from HFD-fed fish or cultured in lipid-supplemented medium exhibited diminished T-cell activation in response to CD3ε monoclonal antibody stimulation. Moreover, HFD-fed tilapia infected by Aeromonas hydrophila showed decreased T-cell expansion, increased T-cell apoptosis, reduced granzyme B expression, and impaired infection elimination. Additionally, HFD attenuated adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) activity in tilapia lymphocytes, which in turn upregulated fatty acid synthesis but downregulated fatty acid β-oxidation. Altogether, our results suggest that HFD impairs lymphocyte homeostasis and T cell-mediated adaptive immune response in tilapia, which may be associated with the abnormal lipid metabolism in lymphocytes. These findings thus provide a novel perspective for understanding the impact of HFD on the adaptive immune response of early vertebrates.


Maternal Low-Protein Diet Modulates Glucose Metabolism and Hepatic MicroRNAs Expression in the Early Life of Offspring †.

  • Jia Zheng‎ et al.
  • Nutrients‎
  • 2017‎

Emerging studies revealed that maternal protein restriction was associated with increased risk of type 2 diabetes mellitus in adulthood. However, the mechanisms of its effects on offspring, especially during early life of offspring, are poorly understood. Here, it is hypothesized that impaired metabolic health in offspring from maternal low-protein diet (LPD) is associated with perturbed miRNAs expression in offspring as early as the weaning age. We examined the metabolic effects on the C57BL/6J mice male offspring at weaning from dams fed with LPD or normal chow diet (NCD) throughout pregnancy and lactation. Maternal LPD feeding impaired metabolic health in offspring. Microarray profiling indicated that mmu-miR-615, mmu-miR-124, mmu-miR-376b, and mmu-let-7e were significantly downregulated, while, mmu-miR-708 and mmu-miR-879 were upregulated in LPD offspring. Bioinformatic analysis showed target genes were mapped to inflammatory-related pathways. Serum tumor necrosis factor-α (TNF-α) levels were higher and interleukin 6 (IL-6) had a tendency to be elevated in the LPD group. Finally, both mRNA and protein levels of IL-6 and TNF-α were significantly increased in the LPD group. Our findings provide novel evidence that maternal LPD can regulate miRNAs expression, which may be associated with chronic inflammation status and metabolic health in offspring as early as the weaning age.


Identification of Potential Bioactive Ingredients and Mechanisms of the Guanxin Suhe Pill on Angina Pectoris by Integrating Network Pharmacology and Molecular Docking.

  • Mingmin Wang‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2021‎

The Guanxin Suhe pill (GSP), a traditional Chinese medicine, has been widely used to treat angina pectoris (AP) in Chinese clinical practice. However, research on the bioactive ingredients and underlying mechanisms of GSP in AP remains scarce. In this study, a system pharmacology approach integrating gastrointestinal absorption (GA) evaluation, drug-likeness (DL) evaluation, target exploration, protein-protein-interaction analysis, Gene Ontology (GO) enrichment analysis, network construction, and molecular docking was adopted to explore its potential mechanisms. A total of 481 ingredients from five herbs were collected, and 242 were qualified based on GA and DL evaluation. Target exploration identified 107 shared targets between GSP and AP. Protein-protein interaction identified VEGFA (vascular endothelial growth factor A), TNF (tumor necrosis factor), CCL2 (C-C motif chemokine ligand 2), FN1 (fibronectin 1), MMP9 (matrix metallopeptidase 9), PTGS2 (prostaglandin-endoperoxide synthase 2), IL10 (interleukin 10), CXCL8 (C-X-C motif chemokine ligand 8), IL6 (interleukin 6), and INS (insulin) as hub targets for GSP, which were involved in the inflammatory process, ECM proteolysis, glucose metabolism, and lipid metabolism. GO enrichment identified top pathways in the biological processes, molecular functions, and cell components, explaining GSP's potential AP treatment mechanism. Positive regulation of the nitric oxide biosynthetic process and the response to hypoxia ranked highest of the biological processes; core targets that GSP can regulate in these two pathways were PTGS2 and NOS2, respectively. Molecular docking verified the interactions between the core genes in the pathway and the active ingredients. The study lays a foundation for further experimental research and clinical application.


iTRAQ‑based proteomic analysis of endotoxin tolerance induced by lipopolysaccharide.

  • Qian Zhang‎ et al.
  • Molecular medicine reports‎
  • 2019‎

The purpose of the present study was to investigate the differentially expressed proteins between endotoxin tolerance and sepsis. Cell models of an endotoxin tolerance group (ET group) and sepsis group [lipopolysaccharide (LPS) group] were established using LPS and evaluated using ELISA and flow cytometry methods. Differentially expressed proteins between the ET and the LPS groups were identified using isobaric tags for relative and absolute quantitation (iTRAQ) analysis and evaluated by bioinformatics analysis. The expression of core proteins was detected by western blotting. It was identified that the expression of tumor necrosis factor‑α and interleukin‑6 was significantly decreased in the ET group compared with the LPS group. Following high‑dose LPS stimulation for 24 h, the positive rate of cluster of differentiation‑16/32 in the ET group (79.07%) was lower when compared with that of the LPS group (94.27%; P<0.05). A total of 235 proteins were identified by iTRAQ, and 36 upregulated proteins with >1.2‑fold differences and 27 downregulated proteins with <0.833‑fold differences were detected between the ET and LPS groups. Furthermore, the expression of high mobility group (HMG)‑A1 and HMGA2 in the ET group was higher compared with the LPS group following high‑dose LPS stimulation for 4 h, while HMGB1 and HMGB2 exhibited the opposite expression trend under the same conditions. In conclusion, proteomics analysis using iTRAQ technology contributes to a deeper understanding of ET mechanisms. HMGA1, HMGA2, HMGB1 and HMGB2 may serve a crucial role in the development of ET.


Treatment of Periodontal Inflammation in Diabetic Rats with IL-1ra Thermosensitive Hydrogel.

  • Yue Liu‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Periodontitis is a chronic inflammatory disease that is considered to be the main cause of adult tooth loss. Diabetes mellitus (DM) has a bidirectional relationship with periodontitis. Interleukin-1β (IL-1β) is an important pre-inflammatory factor, which participates in the pathophysiological process of periodontitis and diabetes. The interleukin-1 receptor antagonist (IL-1ra) is a natural inhibitor of IL-1, and the balance between IL-1ra and IL-1β is one of the main factors affecting chronic periodontitis (CP) and diabetes. The purpose of this study is to develop a drug carrier that is safe and nontoxic and can effectively release IL-1ra, which can effectively slow down the inflammation of periodontal tissues with diabetes, and explore the possibility of lowering the blood sugar of this drug carrier. Therefore, in this experiment, a temperature-sensitive hydrogel loaded with IL-1ra was prepared and characterized, and its anti-inflammatory effect in high-sugar environments in vivo and in vitro was evaluated. The results showed that the hydrogel could gel after 5 min at 37 °C, the pore size was 5-70 μm, and the cumulative release of IL-1ra reached 83.23% on the 21st day. Real-time polymerase chain reaction (qRT-PCR) showed that the expression of IL-1β, Interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α) inflammatory factors decreased after the treatment with IL-1ra-loaded thermosensitive hydrogel. Histological evaluation and micro-computed tomography (Micro-CT) showed that IL-1ra-loaded thermosensitive hydrogel could effectively inhibit periodontal inflammation and reduce alveolar bone absorption in rats with diabetic periodontitis. It is worth mentioning that this hydrogel also plays a role in relieving hyperglycemia. Therefore, the temperature-sensitive hydrogel loaded with IL-1ra may be an effective method to treat periodontitis with diabetes.


Acarbose reduces blood glucose by activating miR-10a-5p and miR-664 in diabetic rats.

  • Qian Zhang‎ et al.
  • PloS one‎
  • 2013‎

MicroRNAs (miRNAs) are non-coding RNA molecules involved in the post-transcriptional regulation of a large number of genes, including those involved in glucose metabolism. Acarbose is an α-glucosidase inhibitor that improves glycemic control by decreasing the intestinal absorption of glucose, thereby decreasing the elevation of postprandial blood glucose. However, acarbose is poorly absorbed into the blood stream from the gut. Therefore, the exact mechanisms by which acarbose affects glucose metabolism are unclear. This study investigated the effect of acarbose on glucose metabolism in diabetic rats and tested the hypothesis that acarbose acts directly through miRNA-regulated expression in the intestinal epithelium. Rats were divided into four groups: a control group, a diabetic group (DM), a low dose of acarbose group (AcarL) and a high dose of acarbose group (AcarH). Ileum samples were analyzed using miRCURY LNA™ microRNA Array, qPCR and immunohistochemistry. We found that 8-week treatment with acarbose significantly decreased fasting blood glucose. Oral glucose tolerance tests (OGTT) showed that blood glucose was significantly reduced in the AcarL and AcarH groups at 30 min, 60 min and 120 min after oral glucose administration. We found that miR-151*, miR-10a-5p, miR-205, miR-17-5p, miR-145 and miR-664 were up-regulated in the AcarH group, while miR-541 and miR-135b were down-regulated. Through target gene analysis, real time PCR and immunohistochemistry verification, we found that these miRNAs suppressed the expression of proinflammatory cytokines [IL6 (interleukin 6) and TNF (tumor necrosis factor)] and mitogen activated protein kinase 1 (MAPK1). Our data suggest that acarbose can improve blood glucose in diabetic rats through the MAPK pathway and can down-regulate proinflammatory factors by activating miR-10a-5p and miR-664 in the ileum.


Puerarin enhances intestinal function in piglets infected with porcine epidemic diarrhea virus.

  • Mengjun Wu‎ et al.
  • Scientific reports‎
  • 2021‎

Puerarin has been reported to be an excellent antioxidant, anti-inflammatory and antimicrobial agent, but the potential effect of puerarin on porcine epidemic diarrhea virus (PEDV) is unclear. This study aimed to determine whether puerarin could alleviate intestinal injury in piglets infected with PEDV. A PEDV (Yunnan province strain) infection model was applied to 7-day-old piglets at 104.5 TCID50 (50% tissue culture infectious dose). Piglets were orally administered with puerarin at the dosage of 0.5 mg/kg body weight from day 5 to day 9. On day 9 of the trial, piglets were inoculated orally with PEDV. Three days later, jugular vein blood and intestinal samples were collected. Results showed puerarin reduced morbidity of piglets infected with PEDV. In addition, puerarin reduced the activities of aspartate aminotransferase and alkaline phosphatase, the ratio of serum aspartate aminotransferase to serum alanine aminotransferase, the number of white blood cells and neutrophils, and the plasma concentrations of interleukin-6, interleukin-8 and tumor necrosis factor-α, as well as protein abundances of heat shock protein-70 in PEDV-infected piglets. Moreover, puerarin increased D-xylose concentration but decreased intestinal fatty acid-binding protein concentration and diamine oxidase activity in the plasma of piglets infected with PEDV. Puerarin increased the activities of total superoxide dismutase, glutathione peroxidase and catalase, while decreasing the activities of myeloperoxidase and concentration of hydrogen peroxide in both the intestine and plasma of PEDV-infected piglets. Puerarin decreased mRNA levels of glutathione S-transferase omega 2 but increased the levels of nuclear factor erythroid 2-related factor 2. Furthermore, puerarin increased the abundance of total eubacteria (16S rRNA), Enterococcus genus, Lactobacillus genus and Enterobacteriaceae family in the intestine, but reduced the abundance of Clostridium coccoides in the caecum. These data indicate puerarin improved intestinal function in piglets infected by PEDV and may be a promising supplement for the prevention of PEDV infection.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: