Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 27 papers

Human vascular smooth muscle cells express interleukin-1beta-converting enzyme (ICE), but inhibit processing of the interleukin-1beta precursor by ICE.

  • U Schönbeck‎ et al.
  • The Journal of experimental medicine‎
  • 1997‎

Local immunoregulatory processes during normal vascular biology or pathogenesis are mediated in part by the production of and response to cytokines by vessel wall cells. Among these cytokines interleukin (IL)-1 is considered to be of major importance. Although vascular smooth muscle (SMC) and endothelial cells (EC) expressed both IL-1alpha and IL-1beta as cell-associated, 33-kilodalton (kD) precursors, SMC neither contained detectable mature IL-1beta, nor processed recombinant IL-1beta precursor into its mature 17-kD form. Thus, we investigated the expression and function of IL-1beta-converting enzyme (ICE) in vascular cells. We demonstrate in processing experiments with recombinant IL-1 precursor molecules that EC processed IL-1beta, in contrast to SMC. Despite the failure of SMC to process IL-1beta, these cells expressed ICE mRNA, immunoreactive ICE protein, and the expected IL-1beta nucleotide sequence. The lack of processing was explained by our finding that extracts of SMC specifically and concentration dependently blocked processing of IL-1beta precursor by recombinant or native ICE. The initial biochemical characterization of the inhibitory activity showed that it is heat-labile, has a molecular size of 50-100 kD, and is associated to the cell membrane compartment. Inhibition of processing, i.e., activation of IL-1beta precursor by SMC may constitute a novel regulatory mechanism during normal vascular biology or pathogenesis of vascular diseases.


Tumor necrosis factor alpha and interleukin 1beta enhance the cortisone/cortisol shuttle.

  • G Escher‎ et al.
  • The Journal of experimental medicine‎
  • 1997‎

Endogenously released or exogenously administered glucocorticosteroids are relevant hormones for controlling inflammation. Only 11beta-hydroxy glucocorticosteroids, but not 11-keto glucocorticosteroids, activate glucocorticoid receptors. Since we found that glomerular mesangial cells (GMC) express 11beta-hydroxysteroid dehydrogenase 1 (11beta-OHSD1), which interconverts 11-keto glucocorticosteroids into 11beta-hydroxy glucocorticosteroids (cortisone/cortisol shuttle), we explored whether 11beta-OHSD1 determines the antiinflammatory effect of glucocorticosteroids. GMC exposed to interleukin (IL)-1beta or tumor necrosis factor alpha (TNF-alpha) release group II phospholipase A2 (PLA2), a key enzyme producing inflammatory mediators. 11beta-hydroxy glucocorticosteroids inhibited cytokine-induced transcription and release of PLA2 through a glucocorticoid receptor-dependent mechanism. This inhibition was enhanced by inhibiting 11beta-OHSD1. Interestingly, 11-keto glucocorticosteroids decreased cytokine-induced PLA2 release as well, a finding abrogated by inhibiting 11beta-OHSD1. Stimulating GMC with IL-1beta or TNF-alpha increased expression and reductase activity of 11beta-OHSD1. Similarly, this IL-1beta- and TNF-alpha-induced formation of active 11beta-hydroxy glucocorticosteroids from inert 11-keto glucocorticosteroids by the 11beta-OHSD1 was shown in the Kiki cell line that expresses the stably transfected bacterial beta-galactosidase gene under the control of a glucocorticosteroids response element. Thus, we conclude that 11beta-OHSD1 controls access of 11beta-hydroxy glucocorticosteroids and 11-keto glucocorticosteroids to glucocorticoid receptors and thus determines the anti-inflammatory effect of glucocorticosteroids. IL-1beta and TNF-alpha upregulate specifically the reductase activity of 11beta-OHSD1 and counterbalance by that mechanism their own proinflammatory effect.


Methylation-dependent gene silencing induced by interleukin 1beta via nitric oxide production.

  • A Hmadcha‎ et al.
  • The Journal of experimental medicine‎
  • 1999‎

Interleukin (IL)-1beta is a pleiotropic cytokine implicated in a variety of activities, including damage of insulin-producing cells, brain injury, or neuromodulatory responses. Many of these effects are mediated by nitric oxide (NO) produced by the induction of NO synthase (iNOS) expression. We report here that IL-1beta provokes a marked repression of genes, such as fragile X mental retardation 1 (FMR1) and hypoxanthine phosphoribosyltransferase (HPRT), having a CpG island in their promoter region. This effect can be fully prevented by iNOS inhibitors and is dependent on DNA methylation. NO donors also cause FMR1 and HPRT gene silencing. NO-induced methylation of FMR1 CpG island can be reverted by demethylating agents which, in turn, produce the recovery of gene expression. The effects of IL-1beta and NO appear to be exerted through activation of DNA methyltransferase (DNA MeTase). Although exposure of the cells to NO does not increase DNA MeTase gene expression, the activity of the enzyme selectively increases when NO is applied directly on a nuclear protein extract. These findings reveal a previously unknown effect of IL-1beta and NO on gene expression, and demonstrate a novel pathway for gene silencing based on activation of DNA MeTase by NO and acute modification of CpG island methylation.


Stimulation of Toll-like receptor 3 and 4 induces interleukin-1beta maturation by caspase-8.

  • Jonathan Maelfait‎ et al.
  • The Journal of experimental medicine‎
  • 2008‎

The cytokine interleukin (IL)-1beta is a key mediator of the inflammatory response and has been implicated in the pathophysiology of acute and chronic inflammation. IL-1beta is synthesized in response to many stimuli as an inactive pro-IL-1beta precursor protein that is further processed by caspase-1 into mature IL-1beta, which is the secreted biologically active form of the cytokine. Although stimulation of membrane-bound Toll-like receptors (TLRs) up-regulates pro-IL-1beta expression, activation of caspase-1 is believed to be mainly initiated by cytosolic Nod-like receptors. In this study, we show that polyinosinic:polycytidylic acid (poly[I:C]) and lipopolysaccharide stimulation of macrophages induces pro-IL-1beta processing via a Toll/IL-1R domain-containing adaptor-inducing interferon-beta-dependent signaling pathway that is initiated by TLR3 and TLR4, respectively. Ribonucleic acid interference (RNAi)-mediated knockdown of the intracellular receptors NALP3 or MDA5 did not affect poly(I:C)-induced pro-IL-1beta processing. Surprisingly, poly(I:C)- and LPS-induced pro-IL-1beta processing still occurred in caspase-1-deficient cells. In contrast, pro-IL-1beta processing was inhibited by caspase-8 peptide inhibitors, CrmA or vFLIP expression, and caspase-8 knockdown via RNAi, indicating an essential role for caspase-8. Moreover, recombinant caspase-8 was able to cleave pro-IL-1beta in vitro at exactly the same site as caspase-1. These results implicate a novel role for caspase-8 in the production of biologically active IL-1beta in response to TLR3 and TLR4 stimulation.


The serpin proteinase inhibitor 9 is an endogenous inhibitor of interleukin 1beta-converting enzyme (caspase-1) activity in human vascular smooth muscle cells.

  • J L Young‎ et al.
  • The Journal of experimental medicine‎
  • 2000‎

Interleukin-1beta-converting enzyme (ICE, caspase-1) regulates key steps in inflammation and immunity, by activating the proinflammatory cytokines interleukin (IL-)1beta and IL-18, or mediating apoptotic processes. We recently provided evidence for the regulation of caspase-1 activity via an endogenous inhibitor expressed by human vascular smooth muscle cells (SMCs) (Schönbeck, U., M. Herzberg, A. Petersen, C. Wohlenberg, J. Gerdes, H.-D. Flad, and H. Loppnow. 1997. J. Exp. Med. 185:1287-1294). However, the molecular identity of this endogenous inhibitor remained undefined. We report here that the serine proteinase inhibitor (serpin) PI-9 accounts for the endogenous caspase-1 inhibitory activity in human SMCs and prevents processing of the enzyme's natural substrates, IL-1beta and IL-18 precursor. Treatment of SMC lysates with anti-PI-9 antibody abrogated the caspase-1 inhibitory activity and coprecipitated the enzyme, demonstrating protein-protein interaction. Furthermore, PI-9 antisense oligonucleotides coordinately reduced PI-9 expression and promoted IL-1beta release. Since SMCs comprise the majority of cells in the vascular wall, and because IL-1 is implicated in atherogenesis, we tested the biological validity of our in vitro findings within human atheroma in situ. The unaffected arterial wall contains abundant and homogeneously distributed PI-9. In human atherosclerotic lesions, however, PI-9 expression correlated inversely with immunoreactive IL-1beta, supporting a potential role of the endogenous caspase-1 inhibitor in this chronic inflammatory disease. Thus, our results provide new insights into the regulation of this enzyme involved in immune and inflammatory processes of chronic inflammatory diseases, and point to an endogenous antiinflammatory action of PI-9, dysregulated in a prevalent human disease.


Suppression of apoptosis by nitric oxide via inhibition of interleukin-1beta-converting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like proteases.

  • S Dimmeler‎ et al.
  • The Journal of experimental medicine‎
  • 1997‎

Physiological levels of shear stress alter the genetic program of cultured endothelial cells and are associated with reduced cellular turnover rates and formation of atherosclerotic lesions in vivo. To test the hypothesis that shear stress (15 dynes/cm2) interferes with programmed cell death, apoptosis was induced in human umbilical venous cells (HUVEC) by tumor necrosis factor-alpha (TNF-alpha). Apoptosis was quantified by ELISA specific for histone-associated DNA-fragments and confirmed by demonstrating the specific pattern of internucleosomal DNA-fragmentation. TNF-alpha (300 U/ml) mediated increase of DNA-fragmentation was completely abrogated by shear stress (446 +/- 121% versus 57 +/- 11%, P <0.05). This anti-apoptotic activity of shear stress decreased after pharmacological inhibition of endogenous nitric oxide (NO)-synthase by NG-monomethyl-L-arginine and was completely reproduced by exogenous NO-donors. The activation of interleukin-1beta-converting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like cysteine proteases was required to mediate TNF-alpha-induced apoptosis of HUVEC. Endothelial-derived nitric oxide (NO) as well as exogenous NO donors inhibited TNF-alpha-induced cysteine protease activation. Inhibition of CPP-32 enzyme activity was due to specific S-nitrosylation of Cys 163, a functionally essential amino acid conserved among ICE/CPP-32-like proteases. Thus, we propose that shear stress-mediated NO formation interferes with cell death signal transduction and may contribute to endothelial cell integrity by inhibition of apoptosis.


FLICE-inhibitory protein expression during macrophage differentiation confers resistance to fas-mediated apoptosis.

  • H Perlman‎ et al.
  • The Journal of experimental medicine‎
  • 1999‎

Macrophages differentiated from circulating peripheral blood monocytes are essential for host immune responses and have been implicated in the pathogenesis of rheumatoid arthritis and atherosclerosis. In contrast to monocytes, macrophages are resistant to Fas-induced cell death by an unknown mechanism. FLICE (Fas-associated death domain-like interleukin 1beta-converting enzyme)-inhibitory protein (Flip), a naturally occurring caspase-inhibitory protein that lacks the critical cysteine domain necessary for catalytic activity, is a negative regulator of Fas-induced apoptosis. Here, we show that monocyte differentiation into macrophages was associated with upregulation of Flip and a decrease in Fas-mediated apoptosis. Overexpression of Flip protected monocytes from Fas-mediated apoptosis, whereas acute Flip inhibition in macrophages induced apoptosis. Addition of an antagonistic Fas ligand antibody to Flip antisense-treated macrophages rescued cultures from apoptosis, demonstrating that endogenous Flip blocked Fas-induced cell death. Thus, the expression of Flip in macrophages conferred resistance to Fas-mediated apoptosis, which may contribute to the development of inflammatory disease.


Role of the chemokine decoy receptor D6 in balancing inflammation, immune activation, and antimicrobial resistance in Mycobacterium tuberculosis infection.

  • Diana Di Liberto‎ et al.
  • The Journal of experimental medicine‎
  • 2008‎

D6 is a decoy and scavenger receptor for inflammatory CC chemokines. D6-deficient mice were rapidly killed by intranasal administration of low doses of Mycobacterium tuberculosis. The death of D6(-/-) mice was associated with a dramatic local and systemic inflammatory response with levels of M. tuberculosis colony-forming units similar to control D6-proficient mice. D6-deficient mice showed an increased numbers of mononuclear cells (macrophages, dendritic cells, and CD4 and CD8 T lymphocytes) infiltrating inflamed tissues and lymph nodes, as well as abnormal increased concentrations of CC chemokines (CCL2, CCL3, CCL4, and CCL5) and proinflammatory cytokines (tumor necrosis factor alpha, interleukin 1beta, and interferon gamma) in bronchoalveolar lavage and serum. High levels of inflammatory cytokines in D6(-/-) infected mice were associated with liver and kidney damage, resulting in both liver and renal failure. Blocking inflammatory CC chemokines with a cocktail of antibodies reversed the inflammatory phenotype of D6(-/-) mice but led to less controlled growth of M. tuberculosis. Thus, the D6 decoy receptor plays a key role in setting the balance between antimicrobial resistance, immune activation, and inflammation in M. tuberculosis infection.


Nuclear factor (NF)-kappaB-regulated X-chromosome-linked iap gene expression protects endothelial cells from tumor necrosis factor alpha-induced apoptosis.

  • C Stehlik‎ et al.
  • The Journal of experimental medicine‎
  • 1998‎

By differential screening of tumor necrosis factor alpha (TNF-alpha) and lipopolysaccharide (LPS)- activated endothelial cells (ECs), we have identified a cDNA clone that turned out to be a member of the inhibitor of apoptosis (iap) gene family. iap genes function to protect cells from undergoing apoptotic death in response to a variety of stimuli. These iap genes, hiap1, hiap2, and xiap were found to be strongly upregulated upon treatment of ECs with the inflammatory cytokines TNF-alpha, interleukin 1beta, and LPS, reagents that lead to activation of the nuclear transcription factor kappaB (NF-kappaB). Indeed, overexpression of IkappaBalpha, an inhibitor of NF-kappaB, suppresses the induced expression of iap genes and sensitizes ECs to TNF-alpha-induced apoptosis. Ectopic expression of one member of the human iap genes, human X-chromosome-linked iap (xiap), using recombinant adenovirus overrules the IkappaBalpha effect and protects ECs from TNF-alpha- induced apoptosis. We conclude that xiap represents one of the NF-kappaB-regulated genes that counteracts the apoptotic signals caused by TNF-alpha and thereby prevents ECs from undergoing apoptosis during inflammation.


Prevention of peripheral tolerance by a dendritic cell growth factor: flt3 ligand as an adjuvant.

  • B Pulendran‎ et al.
  • The Journal of experimental medicine‎
  • 1998‎

Injections of soluble proteins are poorly immunogenic, and often elicit antigen-specific tolerance. The mechanism of this phenomenon has been an enduring puzzle, but it has been speculated that tolerance induction may be due to antigen presentation by poorly stimulatory, resting B cells, which lack specific immunoglobulin receptors for the protein. In contrast, adjuvants, or infectious agents, which cause the release of proinflammatory cytokines such as tumor necrosis factor alpha and interleukin 1beta in vivo are believed to recruit and activate professional antigen-presenting cells to the site(s) of infection, thereby eliciting immunity. Here we show that administration of Flt3 ligand (FL), a cytokine capable of inducing large numbers of dendritic cells (DCs) in vivo, (a) dramatically enhances the sensitivity of antigen-specific B and T cell responses to systemic injection of a soluble protein, through a CD40-CD40 ligand-dependent mechanism; (b) influences the class of antibody produced; and (c) enables productive immune responses to otherwise tolerogenic protocols. These data support the hypothesis that the delicate balance between immunity and tolerance in vivo is pivotally controlled by DCs, and underscore the potential of FL as a vaccine adjuvant for immunotherapy in infectious disease and other clinical settings.


KLF2 Is a novel transcriptional regulator of endothelial proinflammatory activation.

  • Sucharita SenBanerjee‎ et al.
  • The Journal of experimental medicine‎
  • 2004‎

The vascular endothelium is a critical regulator of vascular function. Diverse stimuli such as proinflammatory cytokines and hemodynamic forces modulate endothelial phenotype and thereby impact on the development of vascular disease states. Therefore, identification of the regulatory factors that mediate the effects of these stimuli on endothelial function is of considerable interest. Transcriptional profiling studies identified the Kruppel-like factor (KLF)2 as being inhibited by the inflammatory cytokine interleukin-1beta and induced by laminar shear stress in cultured human umbilical vein endothelial cells. Overexpression of KLF2 in umbilical vein endothelial cells robustly induced endothelial nitric oxide synthase expression and total enzymatic activity. In addition, KLF2 overexpression potently inhibited the induction of vascular cell adhesion molecule-1 and endothelial adhesion molecule E-selectin in response to various proinflammatory cytokines. Consistent with these observations, in vitro flow assays demonstrate that T cell attachment and rolling are markedly attenuated in endothelial monolayers transduced with KLF2. Finally, our studies implicate recruitment by KLF2 of the transcriptional coactivator cyclic AMP response element-binding protein (CBP/p300) as a unifying mechanism for these various effects. These data implicate KLF2 as a novel regulator of endothelial activation in response to proinflammatory stimuli.


Molecular explanation for the contradiction between systemic Th17 defect and localized bacterial infection in hyper-IgE syndrome.

  • Yoshiyuki Minegishi‎ et al.
  • The Journal of experimental medicine‎
  • 2009‎

Hyper-IgE syndrome (HIES) is a primary immunodeficiency characterized by atopic manifestations and susceptibility to infections with extracellular pathogens, typically Staphylococcus aureus, which preferentially affect the skin and lung. Previous studies reported the defective differentiation of T helper 17 (Th17) cells in HIES patients caused by hypomorphic STAT3 mutations. However, the apparent contradiction between the systemic Th17 deficiency and the skin/lung-restricted susceptibility to staphylococcal infections remains puzzling. We present a possible molecular explanation for this enigmatic contradiction. HIES T cells showed impaired production of Th17 cytokines but normal production of classical proinflammatory cytokines including interleukin 1beta. Normal human keratinocytes and bronchial epithelial cells were deeply dependent on the synergistic action of Th17 cytokines and classical proinflammatory cytokines for their production of antistaphylococcal factors, including neutrophil-recruiting chemokines and antimicrobial peptides. In contrast, other cell types were efficiently stimulated with the classical proinflammatory cytokines alone to produce such factors. Accordingly, keratinocytes and bronchial epithelial cells, unlike other cell types, failed to produce antistaphylococcal factors in response to HIES T cell-derived cytokines. These results appear to explain, at least in part, why HIES patients suffer from recurrent staphylococcal infections confined to the skin and lung in contrast to more systemic infections in neutrophil-deficient patients.


Venular basement membranes contain specific matrix protein low expression regions that act as exit points for emigrating neutrophils.

  • Shijun Wang‎ et al.
  • The Journal of experimental medicine‎
  • 2006‎

The mechanism of leukocyte migration through venular walls in vivo is largely unknown. By using immunofluorescence staining and confocal microscopy, the present study demonstrates the existence of regions within the walls of unstimulated murine cremasteric venules where expression of key vascular basement membrane (BM) constituents, laminin 10, collagen IV, and nidogen-2 (but not perlecan) are considerably lower (<60%) than the average expression detected in the same vessel. These sites were closely associated with gaps between pericytes and were preferentially used by migrating neutrophils during their passage through cytokine-stimulated venules. Although neutrophil transmigration did not alter the number/unit area of extracellular matrix protein low expression sites, the size of these regions was enlarged and their protein content was reduced in interleukin-1beta-stimulated venules. These effects were entirely dependent on the presence of neutrophils and appeared to involve neutrophil-derived serine proteases. Furthermore, evidence was obtained indicating that transmigrating neutrophils carry laminins on their cell surface in vivo. Collectively, through identification of regions of low extracellular matrix protein localization that define the preferred route for transmigrating neutrophils, we have identified a plausible mechanism by which neutrophils penetrate the vascular BM without causing a gross disruption to its intricate structure.


Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-kappaB suppression.

  • Kazuhiro Ito‎ et al.
  • The Journal of experimental medicine‎
  • 2006‎

Glucocorticoids are the most effective antiinflammatory agents for the treatment of chronic inflammatory diseases even though some diseases, such as chronic obstructive pulmonary disease (COPD), are relatively glucocorticoid insensitive. However, the molecular mechanism of this glucocorticoid insensitivity remains uncertain. We show that a defect of glucocorticoid receptor (GR) deacetylation caused by impaired histone deacetylase (HDAC) 2 induces glucocorticoid insensitivity toward nuclear factor (NF)-kappaB-mediated gene expression. Specific knockdown of HDAC2 by RNA interference resulted in reduced sensitivity to dexamethasone suppression of interleukin 1beta-induced granulocyte/macrophage colony-stimulating factor production. Loss of HDAC2 did not reduce GR nuclear translocation, GR binding to glucocorticoid response element (GRE) on DNA, or GR-induced DNA or gene induction but inhibited the association between GR and NF-kappaB. GR becomes acetylated after ligand binding, and HDAC2-mediated GR deacetylation enables GR binding to the NF-kappaB complex. Site-directed mutagenesis of K494 and K495 reduced GR acetylation, and the ability to repress NF-kappaB-dependent gene expression becomes insensitive to histone deacetylase inhibition. In conclusion, we show that overexpression of HDAC2 in glucocorticoid-insensitive alveolar macrophages from patients with COPD is able to restore glucocorticoid sensitivity. Thus, reduction of HDAC2 plays a critical role in glucocorticoid insensitivity in repressing NF-kappaB-mediated, but not GRE-mediated, gene expression.


In autoimmune diabetes the transition from benign to pernicious insulitis requires an islet cell response to tumor necrosis factor alpha.

  • S V Pakala‎ et al.
  • The Journal of experimental medicine‎
  • 1999‎

The islet-infiltrating and disease-causing leukocytes that are a hallmark of insulin-dependent diabetes mellitus produce and respond to a set of cytokine molecules. Of these, interleukin 1beta, tumor necrosis factor (TNF)-alpha, and interferon (IFN)-gamma are perhaps the most important. However, as pleiotropic molecules, they can impact the path leading to beta cell apoptosis and diabetes at multiple points. To understand how these cytokines influence both the formative and effector phases of insulitis, it is critical to determine their effects on the assorted cell types comprising the lesion: the effector T cells, antigen-presenting cells, vascular endothelium, and target islet tissue. Here, we report using nonobese diabetic chimeric mice harboring islets deficient in specific cytokine receptors or cytokine-induced effector molecules to assess how these compartmentalized loss-of-function mutations alter the events leading to diabetes. We found that islets deficient in Fas, IFN-gamma receptor, or inducible nitric oxide synthase had normal diabetes development; however, the specific lack of TNF- alpha receptor 1 (p55) afforded islets a profound protection from disease by altering the ability of islet-reactive, CD4(+) T cells to establish insulitis and subsequently destroy islet beta cells. These results argue that islet cells play a TNF-alpha-dependent role in their own demise.


Nuclear factor of activated T cells balances angiogenesis activation and inhibition.

  • Tetiana A Zaichuk‎ et al.
  • The Journal of experimental medicine‎
  • 2004‎

It has been demonstrated that vascular endothelial cell growth factor (VEGF) induction of angiogenesis requires activation of the nuclear factor of activated T cells (NFAT). We show that NFATc2 is also activated by basic fibroblast growth factor and blocked by the inhibitor of angiogenesis pigment epithelial-derived factor (PEDF). This suggests a pivotal role for this transcription factor as a convergence point between stimulatory and inhibitory signals in the regulation of angiogenesis. We identified c-Jun NH2-terminal kinases (JNKs) as essential upstream regulators of NFAT activity in angiogenesis. We distinguished JNK-2 as responsible for NFATc2 cytoplasmic retention by PEDF and JNK-1 and JNK-2 as mediators of PEDF-driven NFAT nuclear export. We identified a novel NFAT target, caspase-8 inhibitor cellular Fas-associated death domain-like interleukin 1beta-converting enzyme inhibitory protein (c-FLIP), whose expression was coregulated by VEGF and PEDF. Chromatin immunoprecipitation showed VEGF-dependent increase of NFATc2 binding to the c-FLIP promoter in vivo, which was attenuated by PEDF. We propose that one possible mechanism of concerted angiogenesis regulation by activators and inhibitors may be modulation of the endothelial cell apoptosis via c-FLIP controlled by NFAT and its upstream regulator JNK.


Attenuation of colon inflammation through activators of the retinoid X receptor (RXR)/peroxisome proliferator-activated receptor gamma (PPARgamma) heterodimer. A basis for new therapeutic strategies.

  • P Desreumaux‎ et al.
  • The Journal of experimental medicine‎
  • 2001‎

The peroxisome proliferator-activated receptor gamma (PPARgamma) is highly expressed in the colon mucosa and its activation has been reported to protect against colitis. We studied the involvement of PPARgamma and its heterodimeric partner, the retinoid X receptor (RXR) in intestinal inflammatory responses. PPARgamma(1/)- and RXRalpha(1/)- mice both displayed a significantly enhanced susceptibility to 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis compared with their wild-type littermates. A role for the RXR/PPARgamma heterodimer in the protection against colon inflammation was explored by the use of selective RXR and PPARgamma agonists. TNBS-induced colitis was significantly reduced by the administration of both PPARgamma and RXR agonists. This beneficial effect was reflected by increased survival rates, an improvement of macroscopic and histologic scores, a decrease in tumor necrosis factor alpha and interleukin 1beta mRNA levels, a diminished myeloperoxidase concentration, and reduction of nuclear factor kappaB DNA binding activity, c-Jun NH(2)-terminal kinase, and p38 activities in the colon. When coadministered, a significant synergistic effect of PPARgamma and RXR ligands was observed. In combination, these data demonstrate that activation of the RXR/PPARgamma heterodimer protects against colon inflammation and suggest that combination therapy with both RXR and PPARgamma ligands might hold promise in the clinic due to their synergistic effects.


c-FLIP mediates resistance of Hodgkin/Reed-Sternberg cells to death receptor-induced apoptosis.

  • Stephan Mathas‎ et al.
  • The Journal of experimental medicine‎
  • 2004‎

Resistance to death receptor-mediated apoptosis is supposed to be important for the deregulated growth of B cell lymphoma. Hodgkin/Reed-Sternberg (HRS) cells, the malignant cells of classical Hodgkin's lymphoma (cHL), resist CD95-induced apoptosis. Therefore, we analyzed death receptor signaling, in particular the CD95 pathway, in these cells. High level CD95 expression allowed a rapid formation of the death-inducing signaling complex (DISC) containing Fas-associated death domain-containing protein (FADD), caspase-8, caspase-10, and most importantly, cellular FADD-like interleukin 1beta-converting enzyme-inhibitory protein (c-FLIP). The immunohistochemical analysis of the DISC members revealed a strong expression of CD95 and c-FLIP overexpression in 55 out of 59 cases of cHL. FADD overexpression was detectable in several cases. Triggering of the CD95 pathway in HRS cells is indicated by the presence of CD95L in cells surrounding them as well as confocal microscopy showing c-FLIP predominantly localized at the cell membrane. Elevated c-FLIP expression in HRS cells depends on nuclear factor (NF)-kappaB. Despite expression of other NF-kappaB-dependent antiapoptotic proteins, the selective down-regulation of c-FLIP by small interfering RNA oligoribonucleotides was sufficient to sensitize HRS cells to CD95 and tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Therefore, c-FLIP is a key regulator of death receptor resistance in HRS cells.


LSP1 is an endothelial gatekeeper of leukocyte transendothelial migration.

  • Lixin Liu‎ et al.
  • The Journal of experimental medicine‎
  • 2005‎

Leukocyte-specific protein 1 (LSP1), an F-actin binding protein and a major downstream substrate of p38 mitogen-activated protein kinase as well as protein kinase C, has been reported to be important in leukocyte chemotaxis. Although its distribution has been thought to be restricted to leukocytes, herein we report that LSP1 is expressed in endothelium and is essential to permit neutrophil emigration. Using intravital microscopy to directly visualize leukocyte rolling, adhesion, and emigration in postcapillary venules in LSP1-deficient (Lsp1-/-) mice, we found that LSP1 deficiency inhibits neutrophil extravasation in response to various cytokines (tumor necrosis factor-alpha and interleukin-1beta) and to neutrophil chemokine keratinocyte-derived chemokine in vivo. LSP1 deficiency did not affect leukocyte rolling or adhesion. Generation of Lsp1-/- chimeric mice using bone marrow transplantation revealed that in mice with Lsp1-/- endothelial cells and wild-type leukocytes, neutrophil transendothelial migration out of postcapillary venules is markedly restricted. In contrast, Lsp1-/- neutrophils in wild-type mice were able to extravasate normally. Consistent with altered endothelial function was a reduction in vascular permeability to histamine in Lsp1-/- animals. Western blot analysis and immunofluorescence microscopy examination confirmed the presence of LSP1 in wild-type but not in Lsp1-/- mouse microvascular endothelial cells. Cultured human endothelial cells also stained positive for LSP1. Our results suggest that LSP1 expressed in endothelium regulates neutrophil transendothelial migration.


Exercise provides direct biphasic cardioprotection via manganese superoxide dismutase activation.

  • N Yamashita‎ et al.
  • The Journal of experimental medicine‎
  • 1999‎

Epidemiologic investigations have shown that exercise reduces morbidity and mortality from coronary artery disease. In this study, using a rat model, we attempted to determine whether exercise can reduce ischemic injury to the heart and elucidate a mechanism for the cardioprotective effect of exercise. Results showed that exercise significantly reduced the magnitude of a myocardial infarction in biphasic manner. The time course for cardioprotection resembled that of the change in manganese superoxide dismutase (Mn-SOD) activity. The administration of the antisense oligodeoxyribonucleotide to Mn-SOD abolished the expected decrease in infarct size. We showed that the level of tumor necrosis factor alpha (TNF-alpha) and interleukin 1beta (IL-1beta) increased after exercise. The simultaneous administration of the neutralizing antibodies to the cytokines abolished the exercise-induced cardioprotection and the activation of Mn-SOD. Furthermore, TNF-alpha can mimic the biphasic pattern of cardioprotection and activation of Mn-SOD. An antioxidant completely abolished cardioprotection and the activation of Mn-SOD by exercise or the injection of TNF-alpha as well as exercise-induced increase in TNF-alpha and IL-1beta. The production of reactive oxygen species and endogenous TNF-alpha and IL-1beta induced by exercise leads to the activation of Mn-SOD, which plays major roles in the acquisition of biphasic cardioprotection against ischemia/reperfusion injury in rats.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: