Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 119 papers

Acupuncture Alters Expression of Insulin Signaling Related Molecules and Improves Insulin Resistance in OLETF Rats.

  • Xin-Yu Huang‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2016‎

To determine effect of acupuncture on insulin resistance in Otsuka Long-Evans Tokushima Fatty (OLETF) rats and to evaluate expression of insulin signaling components. Rats were divided into three groups: Sprague-Dawley (SD) rats, OLETF rats, and acupuncture+OLETF rats. Acupuncture was subcutaneously applied to Neiguan (PC6), Zusanli (ST36), and Sanyinjiao (SP6); in contrast, acupuncture to Shenshu (BL23) was administered perpendicularly. For Neiguan (PC6) and Zusanli (ST36), needles were connected to an electroacupuncture (EA) apparatus. Fasting blood glucose (FPG) was measured by glucose oxidase method. Plasma fasting insulin (FINS) and serum C peptide (C-P) were determined by ELISA. Protein and mRNA expressions of insulin signaling molecules were determined by Western blot and real-time RT-PCR, respectively. OLETF rats exhibit increased levels of FPG, FINS, C-P, and homeostasis model assessment-estimated insulin resistance (HOMA-IR), which were effectively decreased by acupuncture treatment. mRNA expressions of several insulin signaling related molecules IRS1, IRS2, Akt2, aPKCζ, and GLUT4 were decreased in OLETF rats compared to SD controls. Expression of these molecules was restored back to normal levels upon acupuncture administration. PI3K-p85α was increased in OLETF rats; this increase was also reversed by acupuncture treatment. Acupuncture improves insulin resistance in OLETF rats, possibly via regulating expression of key insulin signaling related molecules.


Tinospora crispa Ameliorates Insulin Resistance Induced by High Fat Diet in Wistar Rats.

  • Mohd Nazri Abu‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2015‎

The antidiabetic properties of Tinospora crispa, a local herb that has been used in traditional Malay medicine and rich in antioxidant, were explored based on obesity-linked insulin resistance condition. Male Wistar rats were randomly divided into four groups, namely, the normal control (NC) which received standard rodent diet, the high fat diet (HFD) which received high fat diet only, the high fat diet treated with T. crispa (HFDTC), and the high fat diet treated with orlistat (HFDO). After sixteen weeks of treatment, blood and organs were harvested for analyses. Results showed that T. crispa significantly (p < 0.05) reduced the body weight (41.14 ± 1.40%), adiposity index serum levels (4.910 ± 0.80%), aspartate aminotransferase (AST: 161 ± 4.71 U/L), alanine aminotransferase (ALT: 100.95 ± 3.10 U/L), total cholesterol (TC: 18.55 ± 0.26 mmol/L), triglycerides (TG: 3.70 ± 0.11 mmol/L), blood glucose (8.50 ± 0.30 mmo/L), resistin (0.74 ± 0.20 ng/mL), and leptin (17.428 ± 1.50 ng/mL) hormones in HFDTC group. The insulin (1.65 ± 0.07 pg/mL) and C-peptide (136.48 pmol/L) hormones were slightly decreased but within normal range. The histological results showed unharmed and intact liver tissues in HFDTC group. As a conclusion, T. crispa ameliorates insulin resistance-associated with obesity in Wistar rats fed with high fat diet.


Deepure Tea Improves High Fat Diet-Induced Insulin Resistance and Nonalcoholic Fatty Liver Disease.

  • Jing-Na Deng‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2015‎

This study was to explore the protective effects of Deepure tea against insulin resistance and hepatic steatosis and elucidate the potential underlying molecular mechanisms. C57BL/6 mice were fed with a high fat diet (HFD) for 8 weeks to induce the metabolic syndrome. In the Deepure tea group, HFD mice were administrated with Deepure tea at 160 mg/kg/day by gavage for 14 days. The mice in HFD group received water in the same way over the same period. The age-matched C57BL/6 mice fed with standard chow were used as normal control. Compared to the mice in HFD group, mice that received Deepure tea showed significantly reduced plasma insulin and improved insulin sensitivity. Deepure tea increased the expression of insulin receptor substrate 2 (IRS-2), which plays an important role in hepatic insulin signaling pathway. Deepure tea also led to a decrease in hepatic fatty acid synthesis and lipid accumulation, which were mediated by the downregulation of sterol regulatory element binding protein 1c (SREBP-1c), fatty acid synthesis (FAS), and acetyl-CoA carboxylase (ACC) proteins that are involved in liver lipogenesis. These results suggest that Deepure tea may be effective for protecting against insulin resistance and hepatic steatosis via modulating IRS-2 and downstream signaling SREBP-1c, FAS, and ACC.


Decaffeinated green coffee bean extract attenuates diet-induced obesity and insulin resistance in mice.

  • Su Jin Song‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2014‎

This study investigated whether decaffeinated green coffee bean extract prevents obesity and improves insulin resistance and elucidated its mechanism of action. Male C57BL/6N mice (N = 48) were divided into six dietary groups: chow diet, HFD, HFD-supplemented with 0.1%, 0.3%, and 0.9% decaffeinated green coffee bean extract, and 0.15% 5-caffeoylquinic acid. Based on the reduction in HFD-induced body weight gain and increments in plasma lipids, glucose, and insulin levels, the minimum effective dose of green coffee bean extract appears to be 0.3%. Green coffee bean extract resulted in downregulation of genes involved in WNT10b- and galanin-mediated adipogenesis and TLR4-mediated proinflammatory pathway and stimulation of GLUT4 translocation to the plasma membrane in white adipose tissue. Taken together, decaffeinated green coffee bean extract appeared to reverse HFD-induced fat accumulation and insulin resistance by downregulating the genes involved in adipogenesis and inflammation in visceral adipose tissue.


Wu-Mei-Wan Reduces Insulin Resistance via Inhibition of NLRP3 Inflammasome Activation in HepG2 Cells.

  • Xueping Yang‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2017‎

Wu-Mei-Wan (WMW) is a Chinese herbal formula used to treat type 2 diabetes. In this study, we aimed to explore the effects and mechanisms of WMW on insulin resistance in HepG2 cells. HepG2 cells were pretreated with palmitate (0.25 mM) to impair the insulin signaling pathway. Then, they were treated with different doses of WMW-containing medicated serum and stimulated with 100 nM insulin. Results showed that palmitate could reduce the glucose consumption rate in HepG2 cells and impair insulin signaling related to phosphorylation of insulin receptor (IR) and insulin receptor substrate-1 (IRS-1), thereby regulating the downstream signaling pathways. However, medicated serum of WMW restored impaired insulin signaling, upregulated the expression of phospho-IR (pIR), phosphatidylinositol 3-kinase p85 subunit, phosphoprotein kinase B, and glucose transporter 4, and decreased IRS serine phosphorylation. In addition, it decreased the expression of interleukin-1β and tumor necrosis factor-α, which are the key proinflammatory cytokines involved in insulin resistance; besides, it reduced the expression of NLRP3 inflammasome. These results suggested that WMW could alleviate palmitate-induced insulin resistance in HepG2 cells via inhibition of NLRP3 inflammasome and reduction of proinflammatory cytokine production.


Alismatis Rhizoma Triterpenes Alleviate High-Fat Diet-Induced Insulin Resistance in Skeletal Muscle of Mice.

  • Xiao-Kang Jia‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2021‎

Alismatis rhizoma (AR), which is the dried rhizome of Alisma orientale (Sam.) Juz. (Alismataceae), is an important component of many famous Chinese formulas for hypoglycemic. This study aimed to evaluate the insulin resistance (IR) alleviating effects of AR triterpenes (ART) and ART component compatibility (ARTC, the mixture of 16-oxo-alisol A, 16-oxo-alisol A 23-acetate, 16-oxo-alisol A 24-acetate, alisol C, alisol C 23-acetate, alisol L, alisol A, alisol A 23-acetate, alisol A 24-acetate, alisol L 23-acetate, alisol B, alisol B 23-acetate, 11-deoxy-alisol B and 11-deoxy-alisol B 23-acetate) in high-fat diet-induced IR mice and plamitate-treated IR C2C12 cells, respectively. A dose of 200 mg/kg of ART was orally administered to IR mice, and different doses (25, 50, and 100 μg/ml) of ARTC groups were treated to IR C2C12 cells. IPGTT, IPITT, body weight, Hb1AC, FFA, TNF-α, MCP-1, and IR-associated gene expression (p-AMPK, p-IRS-1, PI3K, p-AKT, p-JNK, and GLUT4) were measured in IR mice. Glucose uptake, TNF-α, MCP-1, and IR-associated gene expression were also measured in IR C2C12 cells. Results showed that ART alleviated high-fat diet-induced IR in the skeletal muscle of mice, and this finding was further validated by ARTC. This study demonstrated that ART presented a notable IR alleviating effect by regulating IR-associated gene expression, and triterpenes were the material basis for the IR alleviating activity of AR.


Galangin and Pinocembrin from Propolis Ameliorate Insulin Resistance in HepG2 Cells via Regulating Akt/mTOR Signaling.

  • Yinkang Liu‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2018‎

Insulin resistance has a critical role in type 2 diabetes. The aim of this study was to investigate the effect of pinobanksin, galangin, chrysin, and pinocembrin from propolis on insulin resistance. Our study shows that galangin and pinocembrin can ameliorate insulin resistance; on the contrary, pinobanksin and chrysin are ineffective. Galangin and pinocembrin treatments substantially increase glucose consumption and glycogen content by enhancing the activities of hexokinase and pyruvate kinase. Galangin treatment with 80 μM increased hexokinase and pyruvate kinase activities by 21.94% and 29.12%, respectively. Moreover, we hypothesize that galangin and pinocembrin may have a synergistic effect on the improvement of insulin resistance via Akt/mTOR signaling pathway, through distinctly upregulating the phosphorylation of IR, Akt, and GSK3β and remarkably downregulating the phosphorylation of IRS. Most notably, this is the first study to our knowledge to investigate pinocembrin about the alleviation of insulin resistance. Our results provide compelling evidence for the depth development of propolis products to ameliorate insulin resistance.


Chronic Unpredictable Mild Stress Aggravates Mood Disorder, Cognitive Impairment, and Brain Insulin Resistance in Diabetic Rat.

  • Hui Yang‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2018‎

Diabetes-induced brain insulin resistance is associated with many mental diseases, including depression. Epidemiological evidences demonstrate the pathophysiologic link between stress, depression, and diabetes. This study was designed to determine whether chronic unpredictable mild stress- (CUMS-) induced changes in brain insulin resistance could contribute to deterioration in mood and cognitive functions in diabetic rats. Male SD rats were randomly assigned to three groups, including standard control group, the diabetes group, and the diabetes with CUMS group. After 7 weeks, emotional behaviors and memory performances as well as metabolic phenotypes were measured. In addition, we examined the changes in protein expression related to brain insulin signaling. Our results show that rats in diabetes with CUMS group displayed a decreased locomotor behavior in open-field test, an increased immobility time in forced swim test, and tail suspension test, and an impaired learning and memory in the Morris water maze when compared to animals in diabetes group. Further, diabetes with CUMS exhibited a significant decrease in phosphorylation of insulin receptor and an increase phosphorylation of IRS-1 in brain. These results suggest that the depression-like behaviors and cognitive function impairments in diabetic rats with CUMS were related to the changes of brain insulin signaling.


Oral administration of alkylglycerols differentially modulates high-fat diet-induced obesity and insulin resistance in mice.

  • Mingshun Zhang‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2013‎

Alkylglycerols (AKGs) from shark liver oil (SLO) were demonstrated to have strong potency to stimulate immune response. However, no study has been conducted on the effects of AKGs on diet-induced obesity and metabolic inflammatory disorder. The purpose of the present study was to investigate the effect of two AKGs isoforms on obesity and insulin resistance in mice fed high-fat (HF) diet. Forty-eight C57BL/6 mice were divided into normal, HF, HF + 20 mg/kg selachyl alcohol (SA), HF + 200 mg/kg SA, HF + 20 mg/kg batyl alcohol (BA), and HF + 200 mg/kg BA groups. Body weight, fasting glucose, lipids, insulin and leptin levels, serum IL-1β, and TNF- α levels were compared among different groups. Our results showed that high-dose SA decreased body weight, serum triglyceride, cholesterol, fasting glucose level, insulin level, and serum leptin level of the HF fed mice, while high-dose BA increased fasting insulin level of the HF fed mice. Pretreatment of primary adipocytes with 10  μ M SA or BA differentially modulates LPS-mediated MAPK and NF- κ B signaling. Our study demonstrated that oral administration of AKGs has differential effects on HF-induced obesity and metabolic inflammatory disorder in mice.


Euphorbia kansui Attenuates Insulin Resistance in Obese Human Subjects and High-Fat Diet-Induced Obese Mice.

  • Seung-Wook Lee‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2017‎

Obesity is a main cause of insulin resistance (IR), metabolic syndrome, and fatty liver diseases. This study evaluated Euphorbia kansui radix (Euphorbia) as a potential treatment option for obesity and obesity-induced IR in obese human and high-fat diet- (HFD-) induced obese mice.


Oleanolic Acid Attenuates Insulin Resistance via NF-κB to Regulate the IRS1-GLUT4 Pathway in HepG2 Cells.

  • Ming Li‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2015‎

The aim of our study is to elucidate the mechanisms of oleanolic acid (OA) on insulin resistance (IR) in HepG2 cells. HepG2 cells were induced with FFA as the insulin resistance model and were treated with OA. Then the glucose content and the levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were analyzed. Moreover, protein expression of nuclear factor kappa B (NF-κB), insulin receptor substrate 1(IRS1), and glucose transporter 4 (GLUT4) in cells treated with OA were measured by Western blot analysis. Additionally, IRS1 protein expression exposed to OA was detected after using pyrrolidine dithiocarbamate (PDTC).Our results revealed that OA decreased the glucose content in HepG2 cells in vitro. Moreover, OA reduced the levels of TNF-α and IL-6 and upregulated IRS1 and GLUT4 protein expression. Furthermore, OA also reduced NF-κB protein expression in insulin-resistant HepG2 cells. After blocking NF-κB, the expression of IRS1 protein had no obvious changes when treated with OA. OA attenuated insulin resistance and decreased the levels of TNF-α and IL-6. Meanwhile, OA decreased NF-κB protein expression and upregulated IRS1 and GLUT4 protein expression. Therefore, regulating the IRS1-GLUT4 pathway via NF-κB was the underlying mechanism of OA on insulin resistance.


Long-Term Consumption of Platycodi Radix Ameliorates Obesity and Insulin Resistance via the Activation of AMPK Pathways.

  • Chae Eun Lee‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2012‎

This study was designed to evaluate the effects and mechanism of Platycodi radix, having white balloon flower (Platycodon grandiflorum for. albiflorum (Honda) H. Hara) on obesity and insulin resistance. The extracts of Platycodi radix with white balloon flower were tested in cultured cells and administered into mice on a high-fat diet. The Platycodi radix activated the AMPK/ACC phosphorylation in C2C12 myotubes and also suppressed adipocyte differentiation in 3T3-L1 cells. In experimental animal, it suppressed the weight gain of obese mice and ameliorated obesity-induced insulin resistance. It also reduced the elevated circulating mediators, including triglyceride (TG), T-CHO, leptin, resistin, and monocyte chemotactic protein (MCP)-1 in obesity. As shown in C2C12 myotubes, the administration of Platycodi radix extracts also recovered the AMPK/ACC phosphorylation in the muscle of obese mice. These results suggest that Platycodi radix with white balloon flower ameliorates obesity and insulin resistance in obese mice via the activation of AMPK/ACC pathways and reductions of adipocyte differentiation.


Diosgenin and 5-Methoxypsoralen Ameliorate Insulin Resistance through ER-α/PI3K/Akt-Signaling Pathways in HepG2 Cells.

  • Ke Fang‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2016‎

To determine the effects and the underlying mechanism of diosgenin (DSG) and 5-methoxypsoralen (5-MOP), two main active components in the classical Chinese prescription Hu-Lu-Ba-Wan (HLBW), on insulin resistance, HepG2 cells were incubated in medium containing insulin. Treatments with DSG, 5-MOP, and their combination were performed, respectively. The result showed that the incubation of HepG2 cells with high concentration insulin markedly decreased glucose consumption and glycogen synthesis. However, treatment with DSG, 5-MOP, or their combination significantly reversed the condition and increased the phosphorylated expression of estrogen receptor-α (ERα), sarcoma (Src), Akt/protein kinase B, glycogen synthase kinase-3β (GSK-3β), and the p85 regulatory subunit of phosphatidylinositol 3-kinase p85 (PI3Kp85). At the transcriptional level, expression of the genes mentioned above also increased except for the negative regulation of GSK-3β mRNA. The increased expression of glucose transport-4 (GLUT-4) was meanwhile observed through immunofluorescence. Nevertheless, the synergistic effect of DSG and 5-MOP on improving glycometabolism was not obvious in the present study. These results suggested that DSG and 5-MOP may improve insulin resistance through an ER-mediated PI3K/Akt activation pathway which may be a new strategy for type 2 diabetes mellitus, especially for women in an estrogen-deficient condition.


Effects of Resveratrol Against Induced Metabolic Syndrome in Rats: Role of Oxidative Stress, Inflammation, and Insulin Resistance.

  • Doha Reda‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2022‎

Metabolic syndrome (MS) is a serious health problem associated with an increase in risk factors for hepatic steatosis, which is the most common liver disease today. The goal of this study was to investigate the protective effects of resveratrol against metabolic alterations associated with a high-fat high-fructose diet (HFFD). Thirty-two male rats were randomly divided into four equal groups: control (cont.), metabolic syndrome (MS), resveratrol (Res), and metabolic syndrome treated with resveratrol (MS + Res). Resveratrol was administrated orally at a dose of 30 mg/kg·bw, daily. After 10 weeks, body weight, serum biochemical parameters, hepatic oxidative stress, inflammatory markers, as well as mRNA levels of hepatic genes related to lipid metabolism and insulin signaling were measured. In addition, the liver was examined histopathologically to detect lipid deposition. Increased body weight, hepatic dysfunction, dyslipidemia, hepatic insulin resistance, hepatic oxidative and inflammatory stress conditions, upregulation of mRNA expression level of sterol regulatory element binding protein 1-c (SREBP1-c), and downregulation of mRNA expression levels of peroxisome proliferated activated receptor alpha (PPARα) and insulin receptor substrate-2 (IR-S2) were all observed in the MS rats. Hepatic steatosis was confirmed by hematoxylin and eosin and Oil Red O staining. Administration of resveratrol reduced liver steatosis, oxidative stress, and inflammatory state. Also, it improved lipid profile as well as insulin sensitivity and reverted alterations in hepatic mRNA expression levels of the tested genes. Based on these findings, resveratrol could be proposed as a therapeutic approach for MS prevention.


The Immunomodulating Effect of Baicalin on Inflammation and Insulin Resistance in High-Fat-Diet-Induced Obese Mice.

  • Ji-Won Noh‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2021‎

Obesity is a chronic low-grade systemic inflammation state, which causes insulin resistance, diabetes, and other metabolic diseases. Baicalin is known to have anti-inflammatory and antiobesity effects. In this study, we investigated the cellular and molecular immunological effects of baicalin on obesity-induced inflammation.


Eleutheroside E, An Active Component of Eleutherococcus senticosus, Ameliorates Insulin Resistance in Type 2 Diabetic db/db Mice.

  • Jiyun Ahn‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2013‎

Eleutheroside E (EE), a principal component of Eleutherococcus senticosus (ES), has anti-inflammatory and protective effects in ischemia heart. However, it is unknown whether it ameliorates insulin resistance and reduces hyperglycemia in diabetes. This study investigated the effect of EE-containing ES extracts, as well as EE, on hyperglycemia and insulin resistance in db/db mice. EE increased the insulin-provoked glucose uptake in C2C12 myotubes. Moreover, EE improved TNF- α -induced suppression of glucose uptake in 3T3-L1 adipocytes. Five-week-old db/db mice were fed a diet consisting of ES extract or EE for 5 weeks. Both were effective in improving serum lipid profiles and significantly decreased blood glucose and serum insulin levels. ES and EE supplementation effectively attenuated HOMA-IR. Glucose tolerance and insulin tolerance tests showed that EE increased insulin sensitivity. Immunohistochemical staining indicated that ES and EE protected pancreatic alpha and beta cells from diabetic damage. In addition, ES and EE improved hepatic glucose metabolism by upregulating glycolysis and downregulating gluconeogenesis in obese type 2 diabetic mice. These data suggest that EE mediates the hyperglycemic effects of ES by regulating insulin signaling and glucose utilization. The beneficial effects of EE may provide an effective and powerful strategy to alleviate diabetes.


Therapeutic Effect of Cucumis melo L. Extract on Insulin Resistance and the Gut Microbiome in Lepob/Lepob Mice.

  • Daeun Lee‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2018‎

Obesity results in the progression of metabolic disorders, especially type 2 diabetes (T2DM). Obesity-induced insulin resistance (IR) is a causative factor of T2DM morbidity in obese people. It is generally held by clinicians that IR is caused by adiposity-related inflammation that is mediated by changes in composite ions in the gut microbiome. This experimental study was designed to investigate the effects of Cucumis melo L. (Cucumis) on obesity-induced IR in genetically leptin-deficient Lepob/Lepob mice. Specifically, we examined the anti-inflammatory effects of Cucumis and the effects of Cucumis on the gut microbiota. We evaluated glucose control by measuring FBS, performing the OGTT, quantifying serum IR, calculating the HOMA-IR, and determining the lipid profiles. To see whether inflammation was reduced, we analyzed adipose tissue macrophages as well as monocytes in the blood. We also profiled the gut microbiota to determine whether the ratios of microbial phyla changed. We found that Cucumis improved IR in obese mice and relieved inflammation in adipose tissue and blood. Simultaneously, the microbiota composition ratios changed. In conclusion, administration of Cucumis improved IR by reducing inflammation, thereby changing the gut microbiota composition. Cucumis is thus a promising treatment for obesity-induced insulin resistance and the inflammatory state.


Wushenziye Formula Improves Skeletal Muscle Insulin Resistance in Type 2 Diabetes Mellitus via PTP1B-IRS1-Akt-GLUT4 Signaling Pathway.

  • Chunyu Tian‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2017‎

Background. Wushenziye formula (WSZYF) is an effective traditional Chinese medicine in the treatment of type 2 diabetes mellitus (T2DM). Aim. This study aimed to identify the effects and underlying mechanisms of WSZYF on improving skeletal muscle insulin resistance in T2DM. Methods. An animal model of T2DM was induced by Goto-Kakizaki diabetes prone rats fed with high fat and sugar for 4 weeks. Insulin resistance model was induced in skeletal muscle cell. Results. In vivo, WSZYF improved general conditions and decreased significantly fasting blood glucose, glycosylated serum protein, glycosylated hemoglobin, insulin concentration, and insulin resistance index of T2DM rats. In vitro, WSZYF enhanced glucose consumption in insulin resistance model of skeletal muscle cell. Furthermore, WSZYF affected the expressions of molecules in regulating T2DM, including increasing the expressions of p-IRS1, p-Akt, and GLUT4, reducing PTP1B expression. Conclusion. These findings displayed the potential of WSZYF as a new drug candidate in the treatment of T2DM and the antidiabetic mechanism of WSZYF is probably mediated through modulating the PTP1B-IRS1-Akt-GLUT4 signaling pathway.


Erchen Decoction and Linguizhugan Decoction Ameliorate Hepatic Insulin Resistance by Inhibiting IRS-1Ser307 Phosphorylation In Vivo and In Vitro.

  • Huicun Zhang‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2017‎

Erchen decoction (ECD) and Linguizhugan decoction (LGZGD), both are Chinese herbal formula, have been used clinically for the treatment of nonalcoholic fatty liver disease (NAFLD). However, their therapeutic mechanisms are still unclear. Because insulin resistance (IR) is a key etiological factor in the pathology of high-fat diet- (HFD-) induced NAFLD, in this study, the protective effects of ECD and LGZGD on HFD-induced insulin resistance in rats were evaluated and their mechanisms were investigated by OGTT and Western blot. The results showed that treatment with ECD and LGZGD significantly improved insulin resistance and liver damage in rats, evidenced by supported serum aminotransferase levels and the histopathological examination. ECD and LGZGD also showed significant protective effects against HFD-induced hyperlipidemia and the inhibition of the hepatocyte proliferation by palmitate. Furthermore, supplementation of ECD and LGZGD decreased TNF-α, NF-κB, and IRS-1Ser307 phosphorylation expressions in vivo and in vitro. These results indicated that ECD and LGZGD have protective effects against HFD-induced liver IR and their underlying mechanisms involve the TNF-α and insulin pathway. These findings would be beneficial for understanding of the therapeutic effects of ECD and LGZGD in treatment of NAFLD.


Effects of encapsulated propolis on blood glycemic control, lipid metabolism, and insulin resistance in type 2 diabetes mellitus rats.

  • Yajing Li‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2012‎

The present study investigates the encapsulated propolis on blood glycemic control, lipid metabolism, and insulin resistance in type 2 diabetes mellitus (T2DM) rats. The animal characteristics and biological assays of body weight, fasting blood glucose (FBG), fasting serum insulin (FINS), insulin act index (IAI), triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) were measured and euglycemic hyperinsulinemic glucose clamp technique were used to determine these effects. Our findings show that oral administration of encapsulated propolis can significantly inhibit the increasing of FBG and TG in T2DM rats and can improve IAI and M value in euglycemic hyperinsulinemic clamp experiment. There was no significant effects on body weight, TC, HDL-C, and LDL-C in T2DM rats treated with encapsulated propolis. In conclusion, the results indicate that encapsulated propolis can control blood glucose, modulate lipid metabolism, and improve the insulin sensitivity in T2DM rats.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: