Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 183 papers

Receptor binding specificity of recent human H3N2 influenza viruses.

  • Kshama Kumari‎ et al.
  • Virology journal‎
  • 2007‎

Human influenza viruses are known to bind to sialic acid linked alpha2-6 to galactose, but the binding specificity beyond that linkage has not been systematically examined. H3N2 human influenza isolates lost binding to chicken red cells in the 1990s but viruses isolated since 2003 have re-acquired the ability to agglutinate chicken erythrocytes. We have investigated specificity of binding, changes in hemagglutinin sequence of the recent viruses and the role of sialic acid in productive infection.


Evidence for a novel gene associated with human influenza A viruses.

  • Monica Clifford‎ et al.
  • Virology journal‎
  • 2009‎

Influenza A virus genomes are comprised of 8 negative strand single-stranded RNA segments and are thought to encode 11 proteins, which are all translated from mRNAs complementary to the genomic strands. Although human, swine and avian influenza A viruses are very similar, cross-species infections are usually limited. However, antigenic differences are considerable and when viruses become established in a different host or if novel viruses are created by re-assortment devastating pandemics may arise.


Human rhinoviruses and enteroviruses in influenza-like illness in Latin America.

  • Josefina Garcia‎ et al.
  • Virology journal‎
  • 2013‎

Human rhinoviruses (HRVs) belong to the Picornaviridae family with high similarity to human enteroviruses (HEVs). Limited data is available from Latin America regarding the clinical presentation and strains of these viruses in respiratory disease.


Identification of putative interactions between swine and human influenza A virus nucleoprotein and human host proteins.

  • Alex Generous‎ et al.
  • Virology journal‎
  • 2014‎

Influenza A viruses (IAVs) are important pathogens that affect the health of humans and many additional animal species. IAVs are enveloped, negative single-stranded RNA viruses whose genome encodes at least ten proteins. The IAV nucleoprotein (NP) is a structural protein that associates with the viral RNA and is essential for virus replication. Understanding how IAVs interact with host proteins is essential for elucidating all of the required processes for viral replication, restrictions in species host range, and potential targets for antiviral therapies.


Caveolin-1 influences human influenza A virus (H1N1) multiplication in cell culture.

  • Lijing Sun‎ et al.
  • Virology journal‎
  • 2010‎

The threat of recurring influenza pandemics caused by new viral strains and the occurrence of escape mutants necessitate the search for potent therapeutic targets. The dependence of viruses on cellular factors provides a weak-spot in the viral multiplication strategy and a means to interfere with viral multiplication.


The PB1 gene from H9N2 avian influenza virus showed high compatibility and increased mutation rate after reassorting with a human H1N1 influenza virus.

  • Hongrui Cui‎ et al.
  • Virology journal‎
  • 2022‎

Reassortment between human and avian influenza viruses (AIV) may result in novel viruses with new characteristics that may threaten human health when causing the next flu pandemic. A particular risk may be posed by avian influenza viruses of subtype H9N2 that are currently massively circulating in domestic poultry in Asia and have been shown to infect humans. In this study, we investigate the characteristics and compatibility of a human H1N1 virus with avian H9N2 derived genes.


Profiles of cytokine and chemokine gene expression in human pulmonary epithelial cells induced by human and avian influenza viruses.

  • W Y Lam‎ et al.
  • Virology journal‎
  • 2010‎

Influenza pandemic remains a serious threat to human health. In this study, the repertoire of host cellular cytokine and chemokine responses to infections with highly pathogenic avian influenza H5N1, low pathogenicity avian influenza H9N2 and seasonal human influenza H1N1 were compared using an in vitro system based on human pulmonary epithelial cells. The results showed that H5N1 was more potent than H9N2 and H1N1 in inducing CXCL-10/IP-10, TNF-alpha and CCL-5/RANTES. The cytokine/chemokine profiles for H9N2, in general, resembled those of H1N1. Of interest, only H1N1, but none of the avian subtypes examined could induce a persistent elevation of the immune-regulatory cytokine - TGF-β2. The differential expression of cytokines/chemokines following infection with different influenza viruses could be a key determinant for clinical outcome. The potential of using these cytokines/chemokines as prognostic markers or targets of therapy is worth exploring.


Cross-reactive human B cell and T cell epitopes between influenza A and B viruses.

  • Masanori Terajima‎ et al.
  • Virology journal‎
  • 2013‎

Influenza A and B viruses form different genera, which were originally distinguished by antigenic differences in their nucleoproteins and matrix 1 proteins. Cross-protection between these two genera has not been observed in animal experiments, which is consistent with the low homology in viral proteins common to both viruses except for one of three polymerase proteins, polymerase basic 1 (PB1). Recently, however, antibody and CD4+ T cell epitopes conserved between the two genera were identified in humans. A protective antibody epitope was located in the stalk region of the surface glycoprotein, hemagglutinin, and a CD4+ T cell epitope was located in the fusion peptide of the hemagglutinin. The fusion peptide was also found to contain antibody epitopes in humans and animals. A short stretch of well-conserved peptide was also identified in the other surface glycoprotein, neuraminidase, and antibodies binding to this peptide were generated by peptide immunization in rabbits. Although PB1, the only protein which has relatively high overall sequence homology between influenza A and B viruses, is not considered an immunodominant protein in the T cell responses to influenza A virus infection, amino acid sequence comparisons show that a considerable number of previously identified T cell epitopes in the PB1 of influenza A viruses are conserved in the PB1 of influenza B viruses. These data indicate that B and T cell cross-reactivity exists between influenza A and B viruses, which may have modulatory effects on the disease process and recovery. Although the antibody titers and the specific T cell frequencies induced by natural infection or standard vaccination may not be high enough to provide cross protection in humans, it might be possible to develop immunization strategies to induce these cross-reactive responses more efficiently.


The evolution of human influenza A viruses from 1999 to 2006: a complete genome study.

  • Karoline Bragstad‎ et al.
  • Virology journal‎
  • 2008‎

Knowledge about the complete genome constellation of seasonal influenza A viruses from different countries is valuable for monitoring and understanding of the evolution and migration of strains. Few complete genome sequences of influenza A viruses from Europe are publicly available at the present time and there have been few longitudinal genome studies of human influenza A viruses. We have studied the evolution of circulating human H3N2, H1N1 and H1N2 influenza A viruses from 1999 to 2006, we analysed 234 Danish human influenza A viruses and characterised 24 complete genomes.


Prophylactic and therapeutic activity of fully human monoclonal antibodies directed against influenza A M2 protein.

  • Roger R Beerli‎ et al.
  • Virology journal‎
  • 2009‎

Influenza virus infection is a prevalent disease in humans. Antibodies against hemagglutinin have been shown to prevent infection and hence hemagglutinin is the major constituent of current vaccines. Antibodies directed against the highly conserved extracellular domain of M2 have also been shown to mediate protection against Influenza A infection in various animal models. Active vaccination is generally considered the best approach to combat viral diseases. However, passive immunization is an attractive alternative, particularly in acutely exposed or immune compromized individuals, young children and the elderly. We recently described a novel method for the rapid isolation of natural human antibodies by mammalian cell display. Here we used this approach to isolate human monoclonal antibodies directed against the highly conserved extracellular domain of the Influenza A M2 protein. The identified antibodies bound M2 peptide with high affinities, recognized native cell-surface expressed M2 and protected mice from a lethal influenza virus challenge. Moreover, therapeutic treatment up to 2 days after infection was effective, suggesting that M2-specific monoclonals have a great potential as immunotherapeutic agents against Influenza infection.


Serological characterization of guinea pigs infected with H3N2 human influenza or immunized with hemagglutinin protein.

  • Ruth V Bushnell‎ et al.
  • Virology journal‎
  • 2010‎

Recent and previous studies have shown that guinea pigs can be infected with, and transmit, human influenza viruses. Therefore guinea pig may be a useful animal model for better understanding influenza infection and assessing vaccine strategies. To more fully characterize the model, antibody responses following either infection/re-infection with human influenza A/Wyoming/03/2003 H3N2 or immunization with its homologous recombinant hemagglutinin (HA) protein were studied.


Effect of human activated NRAS on replication of delNS1 H5N1 influenza virus in MDCK cells.

  • Jiping Zhu‎ et al.
  • Virology journal‎
  • 2011‎

RAS, coded by ras proto-oncogenes, played an important role in signal transmission to regulate cell growth and differentiation. Host activation of RAS was significant for IFN-sensitive vaccinia virus (delE3L) or attenuate influenza virus in unallowable cells.


Neutralizing human monoclonal antibody against H5N1 influenza HA selected from a Fab-phage display library.

  • Angeline P C Lim‎ et al.
  • Virology journal‎
  • 2008‎

Identification of neutralizing antibodies with specificity away from the traditional mutation prone antigenic regions, against the conserved regions of hemagglutinin from H5N1 influenza virus has the potential to provide a therapeutic option which can be developed ahead of time in preparation for a possible pandemic due to H5N1 viruses. In this study, we used a combination of panning strategies against the hemagglutinin (HA) of several antigenic distinct H5N1 isolates to bias selection of Fab-phage from a naïve human library away from the antigenic regions of HA, toward the more conserved portions of the protein. All of the identified Fab clones which showed binding to multiple antigenically distinct HA were converted to fully human IgG, and tested for their ability to neutralize the uptake of H5N1-virus like particles (VLP) into MDCK cells. Five of the antibodies which showed binding to the relatively conserved HA2 subunit of HA, exhibited neutralization of H5N1-VLP uptake in a dose dependant manner. The inhibitory effects of these five antibodies were similar to those observed with a previously described neutralizing antibody specific for the 140s antigenic loop present within HA1 and highlight the exciting possibility that these antibodies may be efficacious against multiple H5N1 strains.


Detection of human adenoviruses in influenza-negative patients with respiratory tract infections in Nanning, China.

  • Jianqiu Qin‎ et al.
  • Virology journal‎
  • 2023‎

Human adenoviruses (HAdV) have been known to cause a range of diseases, including respiratory tract infections (RTIs). However, there is limited information available regarding the genotype diversity and epidemiology of HAdV associated with RTIs in Nanning.


The mouse and ferret models for studying the novel avian-origin human influenza A (H7N9) virus.

  • Lili Xu‎ et al.
  • Virology journal‎
  • 2013‎

The current study was conducted to establish animal models (including mouse and ferret) for the novel avian-origin H7N9 influenza virus.


Anti-H7N9 avian influenza A virus activity of interferon in pseudostratified human airway epithelium cell cultures.

  • Ai-Jun Chen‎ et al.
  • Virology journal‎
  • 2019‎

Since H7N9 influenza A virus (H7N9) was first reported in 2013, five waves of outbreaks have occurred, posing a huge threat to human health. In preparation for a potential H7N9 epidemic, it is essential to evaluate the efficacy of anti-H7N9 drugs with an appropriate model.


Human monoclonal ScFv that bind to different functional domains of M2 and inhibit H5N1 influenza virus replication.

  • Tippawan Pissawong‎ et al.
  • Virology journal‎
  • 2013‎

Novel effective anti-influenza agent that tolerates influenza virus antigenic variation is needed. Highly conserved influenza virus M2 protein has multiple pivotal functions including ion channel activity for vRNP uncoating, anti-autophagy and virus assembly, morphogenesis and release. Thus, M2 is an attractive target of anti-influenza agents including small molecular drugs and specific antibodies.


The neuraminidases of MDCK grown human influenza A(H3N2) viruses isolated since 1994 can demonstrate receptor binding.

  • Peter G Mohr‎ et al.
  • Virology journal‎
  • 2015‎

The neuraminidases (NAs) of MDCK passaged human influenza A(H3N2) strains isolated since 2005 are reported to have dual functions of cleavage of sialic acid and receptor binding. NA agglutination of red blood cells (RBCs) can be inhibited by neuraminidase inhibitors (NAIs), thus distinguishing it from haemagglutinin (HA) binding. We wanted to know if viruses prior to 2005 can demonstrate this property.


Lysosome-associated membrane glycoprotein 3 is involved in influenza A virus replication in human lung epithelial (A549) cells.

  • Zhuo Zhou‎ et al.
  • Virology journal‎
  • 2011‎

Influenza A virus mutates rapidly, rendering antiviral therapies and vaccines directed against virus-encoded targets ineffective. Knowledge of the host factors and molecular pathways exploited by influenza virus will provide further targets for novel antiviral strategies. However, the critical host factors involved in influenza virus infection have not been fully defined.


Replication of avian, human and swine influenza viruses in porcine respiratory explants and association with sialic acid distribution.

  • Sjouke G M Van Poucke‎ et al.
  • Virology journal‎
  • 2010‎

Throughout the history of human influenza pandemics, pigs have been considered the most likely "mixing vessel" for reassortment between human and avian influenza viruses (AIVs). However, the replication efficiencies of influenza viruses from various hosts, as well as the expression of sialic acid (Sia) receptor variants in the entire porcine respiratory tract have never been studied in detail. Therefore, we established porcine nasal, tracheal, bronchial and lung explants, which cover the entire porcine respiratory tract with maximal similarity to the in vivo situation. Subsequently, we assessed virus yields of three porcine, two human and six AIVs in these explants. Since our results on virus replication were in disagreement with the previously reported presence of putative avian virus receptors in the trachea, we additionally studied the distribution of sialic acid receptors by means of lectin histochemistry. Human (Sia alpha2-6Gal) and avian virus receptors (Sia alpha2-3Gal) were identified with Sambucus Nigra and Maackia amurensis lectins respectively.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: