Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 19 papers out of 19 papers

Deleterious variants in X-linked CFAP47 induce asthenoteratozoospermia and primary male infertility.

  • Chunyu Liu‎ et al.
  • American journal of human genetics‎
  • 2021‎

Asthenoteratozoospermia characterized by multiple morphological abnormalities of the flagella (MMAF) has been identified as a sub-type of male infertility. Recent progress has identified several MMAF-associated genes with an autosomal recessive inheritance in human affected individuals, but the etiology in approximately 40% of affected individuals remains unknown. Here, we conducted whole-exome sequencing (WES) and identified hemizygous missense variants in the X-linked CFAP47 in three unrelated Chinese individuals with MMAF. These three CFAP47 variants were absent in human control population genome databases and were predicted to be deleterious by multiple bioinformatic tools. CFAP47 encodes a cilia- and flagella-associated protein that is highly expressed in testis. Immunoblotting and immunofluorescence assays revealed obviously reduced levels of CFAP47 in spermatozoa from all three men harboring deleterious missense variants of CFAP47. Furthermore, WES data from an additional cohort of severe asthenoteratozoospermic men originating from Australia permitted the identification of a hemizygous Xp21.1 deletion removing the entire CFAP47 gene. All men harboring hemizygous CFAP47 variants displayed typical MMAF phenotypes. We also generated a Cfap47-mutated mouse model, the adult males of which were sterile and presented with reduced sperm motility and abnormal flagellar morphology and movement. However, fertility could be rescued by the use of intra-cytoplasmic sperm injections (ICSIs). Altogether, our experimental observations in humans and mice demonstrate that hemizygous mutations in CFAP47 can induce X-linked MMAF and asthenoteratozoospermia, for which good ICSI prognosis is suggested. These findings will provide important guidance for genetic counseling and assisted reproduction treatments.


Rare mutations in the complement regulatory gene CSMD1 are associated with male and female infertility.

  • Arthur S Lee‎ et al.
  • Nature communications‎
  • 2019‎

Infertility in men and women is a complex genetic trait with shared biological bases between the sexes. Here, we perform a series of rare variant analyses across 73,185 women and men to identify genes that contribute to primary gonadal dysfunction. We report CSMD1, a complement regulatory protein on chromosome 8p23, as a strong candidate locus in both sexes. We show that CSMD1 is enriched at the germ-cell/somatic-cell interface in both male and female gonads. Csmd1-knockout males show increased rates of infertility with significantly increased complement C3 protein deposition in the testes, accompanied by severe histological degeneration. Knockout females show significant reduction in ovarian quality and breeding success, as well as mammary branching impairment. Double knockout of Csmd1 and C3 causes non-additive reduction in breeding success, suggesting that CSMD1 and the complement pathway play an important role in the normal postnatal development of the gonads in both sexes.


Deficiency of the Tbc1d21 gene causes male infertility with morphological abnormalities of the sperm mitochondria and flagellum in mice.

  • Ya-Yun Wang‎ et al.
  • PLoS genetics‎
  • 2020‎

Approximately 2-15% of couples experience infertility, and around half of these cases are attributed to male infertility. We previously identified TBC1D21 as a sterility-related RabGAP gene derived from infertile men. However, the in vivo function of TBC1D21 in male fertility remains unclear. Here, we show that loss of Tbc1d21 in mice resulted in male infertility, characterized by defects in sperm tail structure and diminished sperm motility. The mitochondria of the sperm-tail had an abnormal irregular arrangement, abnormal diameter, and structural defects. Moreover, the axoneme structure of sperm tails was severely disturbed. Several TBC1D21 interactors were selected via proteomic analysis and functional grouping. Two of the candidate interactors, a subunit protein of translocase in the outer membrane of mitochondria (TOMM20) and an inner arm component of the sperm tail axoneme (Dynein Heavy chain 7, DNAH7), confirmed in vivo physical co-localization with TBC1D21. In addition, TOMM20 and DNAH7 detached and dispersed outside the axoneme in Tbc1d21-deficient sperm, instead of aligning with the axoneme. From a clinical perspective, the transcript levels of TBC1D21 in sperm from teratozoospermia cases were significantly reduced when compared with those in normozoospermia. We concluded that TBC1D21 is critical for mitochondrial and axoneme development of mammalian sperm.


SOX30 is required for male fertility in mice.

  • Chun-Wei Allen Feng‎ et al.
  • Scientific reports‎
  • 2017‎

Male infertility is a major and growing problem and, in most cases, the specific root cause is unknown. Here we show that the transcription factor SOX30 plays a critical role in mouse spermatogenesis. Sox30-null mice are healthy and females are fertile, but males are sterile. In the absence of Sox30 meiosis initiates normally in both sexes but, in males, germ cell development arrests during the post-meiotic round spermatid period. In the mutant testis, acrosome and axoneme development are aberrant, multinucleated germ cells (symplasts) form and round spermatids unable to process beyond step 3 of spermiogenesis. No elongated spermatids nor spermatozoa are produced. Thus, Sox30 represents a rare example of a gene for which loss of function results in a complete arrest of spermatogenesis at the onset of spermiogenesis. Our results suggest that SOX30 mutations may underlie some instances of unexplained non-obstructive azoospermia in humans.


DDB1- and CUL4-associated factor 12-like protein 1 (Dcaf12l1) is not essential for male fertility in mice.

  • Brendan J Houston‎ et al.
  • Developmental biology‎
  • 2022‎

Male infertility is a common condition affecting at least 7% of men worldwide and is often genetic in origin. Using whole exome sequencing, we recently discovered three hemizygous, likely damaging variants in DDB1- and CUL4-associated factor 12-like protein 1 (DCAF12L1) in men with azoospermia. DCAF12L1 is located on the X-chromosome and as identified by single cell sequencing studies, its expression is enriched in human testes and specifically in Sertoli cells and spermatogonia. However, very little is known about the role of DCAF12L1 in spermatogenesis, thus we generated a knockout mouse model to further explore the role of DCAF12L1 in male fertility. Knockout mice were generated using CRISPR/Cas9 technology to remove the entire coding region of Dcaf12l1 and were assessed for fertility over a broad range of ages (2-8 months of age). Despite outstanding genetic evidence in men, loss of DCAF12L1 had no discernible impact on male fertility in mice, as highlighted by breeding trials, histological assessment of the testis and epididymis, daily sperm production and evaluation of sperm motility using computer assisted methods. This disparity is likely due to the parallel evolution, and subsequent divergence, of DCAF12 family members in mice and men or the presence of compounding environmental factors in men.


KATNAL1 regulation of sertoli cell microtubule dynamics is essential for spermiogenesis and male fertility.

  • Lee B Smith‎ et al.
  • PLoS genetics‎
  • 2012‎

Spermatogenesis is a complex process reliant upon interactions between germ cells (GC) and supporting somatic cells. Testicular Sertoli cells (SC) support GCs during maturation through physical attachment, the provision of nutrients, and protection from immunological attack. This role is facilitated by an active cytoskeleton of parallel microtubule arrays that permit transport of nutrients to GCs, as well as translocation of spermatids through the seminiferous epithelium during maturation. It is well established that chemical perturbation of SC microtubule remodelling leads to premature GC exfoliation demonstrating that microtubule remodelling is an essential component of male fertility, yet the genes responsible for this process remain unknown. Using a random ENU mutagenesis approach, we have identified a novel mouse line displaying male-specific infertility, due to a point mutation in the highly conserved ATPase domain of the novel KATANIN p60-related microtubule severing protein Katanin p60 subunit A-like1 (KATNAL1). We demonstrate that Katnal1 is expressed in testicular Sertoli cells (SC) from 15.5 days post-coitum (dpc) and that, consistent with chemical disruption models, loss of function of KATNAL1 leads to male-specific infertility through disruption of SC microtubule dynamics and premature exfoliation of spermatids from the seminiferous epithelium. The identification of KATNAL1 as an essential regulator of male fertility provides a significant novel entry point into advancing our understanding of how SC microtubule dynamics promotes male fertility. Such information will have resonance both for future treatment of male fertility and the development of non-hormonal male contraceptives.


Zinc finger RNA binding protein 2 (ZFR2) is not required for male fertility in the mouse.

  • Lachlan M Cauchi‎ et al.
  • Developmental biology‎
  • 2022‎

Thousands of genes are expressed during spermatogenesis and male infertility has a strong genetic component. Within this study, we focus on the role of Zfr2 in male fertility, a gene previously implicated in human male fertility. To date, very little is known about the role of ZFR2 in either humans or mice. To this end, the requirement for ZFR2 in male fertility was assessed using a knockout mouse model.


LRGUK-1 is required for basal body and manchette function during spermatogenesis and male fertility.

  • Yan Liu‎ et al.
  • PLoS genetics‎
  • 2015‎

Male infertility affects at least 5% of reproductive age males. The most common pathology is a complex presentation of decreased sperm output and abnormal sperm shape and motility referred to as oligoasthenoteratospermia (OAT). For the majority of OAT men a precise diagnosis cannot be provided. Here we demonstrate that leucine-rich repeats and guanylate kinase-domain containing isoform 1 (LRGUK-1) is required for multiple aspects of sperm assembly, including acrosome attachment, sperm head shaping and the initiation of the axoneme growth to form the core of the sperm tail. Specifically, LRGUK-1 is required for basal body attachment to the plasma membrane, the appropriate formation of the sub-distal appendages, the extension of axoneme microtubules and for microtubule movement and organisation within the manchette. Manchette dysfunction leads to abnormal sperm head shaping. Several of these functions may be achieved in association with the LRGUK-1 binding partner HOOK2. Collectively, these data establish LRGUK-1 as a major determinant of microtubule structure within the male germ line.


RAB-like 2 has an essential role in male fertility, sperm intra-flagellar transport, and tail assembly.

  • Jennifer C Y Lo‎ et al.
  • PLoS genetics‎
  • 2012‎

A significant percentage of young men are infertile and, for the majority, the underlying cause remains unknown. Male infertility is, however, frequently associated with defective sperm motility, wherein the sperm tail is a modified flagella/cilia. Conversely, a greater understanding of essential mechanisms involved in tail formation may offer contraceptive opportunities, or more broadly, therapeutic strategies for global cilia defects. Here we have identified Rab-like 2 (RABL2) as an essential requirement for sperm tail assembly and function. RABL2 is a member of a poorly characterized clade of the RAS GTPase superfamily. RABL2 is highly enriched within developing male germ cells, where it localizes to the mid-piece of the sperm tail. Lesser amounts of Rabl2 mRNA were observed in other tissues containing motile cilia. Using a co-immunoprecipitation approach and RABL2 affinity columns followed by immunochemistry, we demonstrated that within developing haploid germ cells RABL2 interacts with intra-flagella transport (IFT) proteins and delivers a specific set of effector (cargo) proteins, including key members of the glycolytic pathway, to the sperm tail. RABL2 binding to effector proteins is regulated by GTP. Perturbed RABL2 function, as exemplified by the Mot mouse line that contains a mutation in a critical protein-protein interaction domain, results in male sterility characterized by reduced sperm output, and sperm with aberrant motility and short tails. Our data demonstrate a novel function for the RABL protein family, an essential role for RABL2 in male fertility and a previously uncharacterised mechanism for protein delivery to the flagellum.


Fancm has dual roles in the limiting of meiotic crossovers and germ cell maintenance in mammals.

  • Vanessa Tsui‎ et al.
  • Cell genomics‎
  • 2023‎

Meiotic crossovers are required for accurate chromosome segregation and producing new allelic combinations. Meiotic crossover numbers are tightly regulated within a narrow range, despite an excess of initiating DNA double-strand breaks. Here, we reveal the tumor suppressor FANCM as a meiotic anti-crossover factor in mammals. We use unique large-scale crossover analyses with both single-gamete sequencing and pedigree-based bulk-sequencing datasets to identify a genome-wide increase in crossover frequencies in Fancm-deficient mice. Gametogenesis is heavily perturbed in Fancm loss-of-function mice, which is consistent with the reproductive defects reported in humans with biallelic FANCM mutations. A portion of the gametogenesis defects can be attributed to the cGAS-STING pathway after birth. Despite the gametogenesis phenotypes in Fancm mutants, both sexes are capable of producing offspring. We propose that the anti-crossover function and role in gametogenesis of Fancm are separable and will inform diagnostic pathways for human genomic instability disorders.


AXDND1 is required to balance spermatogonial commitment and for sperm tail formation in mice and humans.

  • Brendan J Houston‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Dynein complexes are large, multi-unit assemblies involved in many biological processes including male fertility via their critical roles in protein transport and axoneme motility. Previously we identified a pathogenic variant in the dynein gene AXDND1 in an infertile man. Subsequently we identified an additional four potentially compound heterozygous variants of unknown significance in AXDND1 in two additional infertile men. We thus tested the role of AXDND1 in mammalian male fertility by generating a knockout mouse model. Axdnd1-/- males were sterile at all ages but could undergo one round of histologically complete spermatogenesis. Subsequently, a progressive imbalance of spermatogonial commitment to spermatogenesis over self-renewal occurred, ultimately leading to catastrophic germ cell loss, loss of blood-testis barrier patency and immune cell infiltration. Sperm produced during the first wave of spermatogenesis were immotile due to abnormal axoneme structure, including the presence of ectopic vesicles and abnormalities in outer dense fibres and microtubule doublet structures. Sperm output was additionally compromised by a severe spermiation defect and abnormal sperm individualisation. Collectively, our data highlight the essential roles of AXDND1 as a regulator of spermatogonial commitment to spermatogenesis and during the processes of spermiogenesis where it is essential for sperm tail development, release and motility.


Human INHBB Gene Variant (c.1079T>C:p.Met360Thr) Alters Testis Germ Cell Content, but Does Not Impact Fertility in Mice.

  • Brendan J Houston‎ et al.
  • Endocrinology‎
  • 2022‎

Testicular-derived inhibin B (α/β B dimers) acts in an endocrine manner to suppress pituitary production of follicle-stimulating hormone (FSH), by blocking the actions of activins (β A/B/β A/B dimers). Previously, we identified a homozygous genetic variant (c.1079T>C:p.Met360Thr) arising from uniparental disomy of chromosome 2 in the INHBB gene (β B-subunit of inhibin B and activin B) in a man suffering from infertility (azoospermia). In this study, we aimed to test the causality of the p.Met360Thr variant in INHBB and testis function. Here, we used CRISPR/Cas9 technology to generate InhbbM364T/M364T mice, where mouse INHBB p.Met364 corresponds with human p.Met360. Surprisingly, we found that the testes of male InhbbM364T/M364T mutant mice were significantly larger compared with those of aged-matched wildtype littermates at 12 and 24 weeks of age. This was attributed to a significant increase in Sertoli cell and round spermatid number and, consequently, seminiferous tubule area in InhbbM364T/M364T males compared to wildtype males. Despite this testis phenotype, male InhbbM364T/M364T mutant mice retained normal fertility. Serum hormone analyses, however, indicated that the InhbbM364T variant resulted in reduced circulating levels of activin B but did not affect FSH production. We also examined the effect of this p.Met360Thr and an additional INHBB variant (c.314C>T: p.Thr105Met) found in another infertile man on inhibin B and activin B in vitro biosynthesis. We found that both INHBB variants resulted in a significant disruption to activin B in vitro biosynthesis. Together, this analysis supports that INHBB variants that limit activin B production have consequences for testis composition in males.


Diverse monogenic subforms of human spermatogenic failure.

  • Liina Nagirnaja‎ et al.
  • Nature communications‎
  • 2022‎

Non-obstructive azoospermia (NOA) is the most severe form of male infertility and typically incurable. Defining the genetic basis of NOA has proven challenging, and the most advanced classification of NOA subforms is not based on genetics, but simple description of testis histology. In this study, we exome-sequenced over 1000 clinically diagnosed NOA cases and identified a plausible recessive Mendelian cause in 20%. We find further support for 21 genes in a 2-stage burden test with 2072 cases and 11,587 fertile controls. The disrupted genes are primarily on the autosomes, enriched for undescribed human "knockouts", and, for the most part, have yet to be linked to a Mendelian trait. Integration with single-cell RNA sequencing data shows that azoospermia genes can be grouped into molecular subforms with synchronized expression patterns, and analogs of these subforms exist in mice. This analysis framework identifies groups of genes with known roles in spermatogenesis but also reveals unrecognized subforms, such as a set of genes expressed across mitotic divisions of differentiating spermatogonia. Our findings highlight NOA as an understudied Mendelian disorder and provide a conceptual structure for organizing the complex genetics of male infertility, which may provide a rational basis for disease classification.


C19ORF84 connects piRNA and DNA methylation machineries to defend the mammalian germ line.

  • Ansgar Zoch‎ et al.
  • Molecular cell‎
  • 2024‎

In the male mouse germ line, PIWI-interacting RNAs (piRNAs), bound by the PIWI protein MIWI2 (PIWIL4), guide DNA methylation of young active transposons through SPOCD1. However, the underlying mechanisms of SPOCD1-mediated piRNA-directed transposon methylation and whether this pathway functions to protect the human germ line remain unknown. We identified loss-of-function variants in human SPOCD1 that cause defective transposon silencing and male infertility. Through the analysis of these pathogenic alleles, we discovered that the uncharacterized protein C19ORF84 interacts with SPOCD1. DNMT3C, the DNA methyltransferase responsible for transposon methylation, associates with SPOCD1 and C19ORF84 in fetal gonocytes. Furthermore, C19ORF84 is essential for piRNA-directed DNA methylation and male mouse fertility. Finally, C19ORF84 mediates the in vivo association of SPOCD1 with the de novo methylation machinery. In summary, we have discovered a conserved role for the human piRNA pathway in transposon silencing and C19ORF84, an uncharacterized protein essential for orchestrating piRNA-directed DNA methylation.


Programmed Cell Death 2-Like (Pdcd2l) Is Required for Mouse Embryonic Development.

  • Brendan J Houston‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2020‎

Globozoospermia is a rare form of male infertility where men produce round-headed sperm that are incapable of fertilizing an oocyte naturally. In a previous study where we undertook a whole exome screen to define novel genetic causes of globozoospermia, we identified homozygous mutations in the gene PDCD2L Two brothers carried a p.(Leu225Val) variant predicted to introduce a novel splice donor site, thus presenting PDCD2L as a potential regulator of male fertility. In this study, we generated a Pdcd2l knockout mouse to test its role in male fertility. Contrary to the phenotype predicted from its testis-enriched expression pattern, Pdcd2l null mice died during embryogenesis. Specifically, we identified that Pdcd2l is essential for post-implantation embryonic development. Pdcd2l-/- embryos were resorbed at embryonic days 12.5-17.5 and no knockout pups were born, while adult heterozygous Pdcd2l males had comparable fertility to wildtype males. To specifically investigate the role of PDCD2L in germ cells, we employed Drosophila melanogaster as a model system. Consistent with the mouse data, global knockdown of trus, the fly ortholog of PDCD2L, resulted in lethality in flies at the third instar larval stage. However, germ cell-specific knockdown with two germ cell drivers did not affect male fertility. Collectively, these data suggest that PDCD2L is not essential for male fertility. By contrast, our results demonstrate an evolutionarily conserved role of PDCD2L in development.


Large-scale analyses of the X chromosome in 2,354 infertile men discover recurrently affected genes associated with spermatogenic failure.

  • Antoni Riera-Escamilla‎ et al.
  • American journal of human genetics‎
  • 2022‎

Although the evolutionary history of the X chromosome indicates its specialization in male fitness, its role in spermatogenesis has largely been unexplored. Currently only three X chromosome genes are considered of moderate-definitive diagnostic value. We aimed to provide a comprehensive analysis of all X chromosome-linked protein-coding genes in 2,354 azoospermic/cryptozoospermic men from four independent cohorts. Genomic data were analyzed and compared with data in normozoospermic control individuals and gnomAD. While updating the clinical significance of known genes, we propose 21 recurrently mutated genes strongly associated with and 34 moderately associated with azoospermia/cryptozoospermia not previously linked to male infertility (novel). The most frequently affected prioritized gene, RBBP7, was found mutated in ten men across all cohorts, and our functional studies in Drosophila support its role in germ stem cell maintenance. Collectively, our study represents a significant step towards the definition of the missing genetic etiology in idiopathic severe spermatogenic failure and significantly reduces the knowledge gap of X-linked genetic causes of azoospermia/cryptozoospermia contributing to the development of future diagnostic gene panels.


Deleterious genetic changes in AGTPBP1 result in teratozoospermia with sperm head and flagella defects.

  • Yu-Hua Lin‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2024‎

Approximately 10%-15% of couples worldwide are infertile, and male factors account for approximately half of these cases. Teratozoospermia is a major cause of male infertility. Although various mutations have been identified in teratozoospermia, these can vary among ethnic groups. In this study, we performed whole-exome sequencing to identify genetic changes potentially causative of teratozoospermia. Out of seven genes identified, one, ATP/GTP Binding Protein 1 (AGTPBP1), was characterized, and three missense changes were identified in two patients (Affected A: p.Glu423Asp and p.Pro631Leu; Affected B: p.Arg811His). In those two cases, severe sperm head and tail defects were observed. Moreover, AGTPBP1 localization showed a fragmented pattern compared to control participants, with specific localization in the neck and annulus regions. Using murine models, we found that AGTPBP1 is localized in the manchette structure, which is essential for sperm structure formation. Additionally, in Agtpbp1-null mice, we observed sperm head and tail defects similar to those in sperm from AGTPBP1-mutated cases, along with abnormal polyglutamylation tubulin and decreasing △-2 tubulin levels. In this study, we established a link between genetic changes in AGTPBP1 and human teratozoospermia for the first time and identified the role of AGTPBP1 in deglutamination, which is crucial for sperm formation.


Activin C antagonizes activin A in vitro and overexpression leads to pathologies in vivo.

  • Elspeth Gold‎ et al.
  • The American journal of pathology‎
  • 2009‎

Activin A is a potent growth and differentiation factor whose synthesis and bioactivity are tightly regulated. Both follistatin binding and inhibin subunit heterodimerization block access to the activin receptor and/or receptor activation. We postulated that the activin-beta(C) subunit provides another mechanism regulating activin bioactivity. To test our hypothesis, we examined the biological effects of activin C and produced mice that overexpress activin-beta(C). Activin C reduced activin A bioactivity in vitro; in LNCaP cells, activin C abrogated both activin A-induced Smad signaling and growth inhibition, and in LbetaT2 cells, activin C antagonized activin A-mediated activity of an follicle-stimulating hormone-beta promoter. Transgenic mice that overexpress activin-betaC exhibited disease in testis, liver, and prostate. Male infertility was caused by both reduced sperm production and impaired sperm motility. The livers of the transgenic mice were enlarged because of an imbalance between hepatocyte proliferation and apoptosis. Transgenic prostates showed evidence of hypertrophy and epithelial cell hyperplasia. Additionally, there was decreased evidence of nuclear Smad-2 localization in the testis, liver, and prostate, indicating that overexpression of activin-beta(C) antagonized Smad signaling in vivo. Underlying the significance of these findings, human testis, liver, and prostate cancers expressed increased activin-betaC immunoreactivity. This study provides evidence that activin-beta(C) is an antagonist of activin A and supplies an impetus to examine its role in development and disease.


The generation of live offspring from vitrified oocytes.

  • L Gabriel Sanchez-Partida‎ et al.
  • PloS one‎
  • 2011‎

Oocyte cryopreservation is extremely beneficial for assisted reproductive technologies, the treatment of infertility and biotechnology and offers a viable alternative to embryo freezing and ovarian grafting approaches for the generation of embryonic stem cells and live offspring. It also offers the potential to store oocytes to rescue endangered species by somatic cell nuclear transfer and for the generation of embryonic stem cells to study development in these species. We vitrified mouse oocytes using a range of concentrations of trehalose (0 to 0.3 M) and demonstrated that 0.1 and 0.3 M trehalose had similar developmental rates, which were significantly different to the 0.2 M cohort (P<0.05). As mitochondria are important for fertilisation outcome, we observed that the clustering and distribution of mitochondria of the 0.2 M cohort were more affected by vitifrication than the other groups. Nevertheless, all 3 cohorts were able to develop to blastocyst, following in vitro fertilisation, although developmental rates were better for the 0.1 and 0.3 M cohorts than the 0.2 M cohort (P<0.05). Whilst blastocysts gave rise to embryonic stem-like cells, it was apparent from immunocytochemistry and RT-PCR that these cells did not demonstrate true pluripotency and exhibited abnormal karyotypes. However, they gave rise to teratomas following injection into SCID mice and differentiated into cells of each of the germinal layers following in vitro differentiation. The transfer of 2-cell embryos from the 0.1 and 0.3 M cohorts resulted in the birth of live offspring that had normal karyotypes (9/10). When 2-cell embryos from vitrified oocytes underwent vitrification, and were thawed and transferred, live offspring were obtained that exhibited normal karyotypes, with the exception of one offspring who was larger and died at 7 months. We conclude that these studies highlight the importance of the endometrial environment for the maintenance of genetic stability and thus the propagation of specific genetic traits.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: