Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 393 papers

Deficiency in serum immunoglobulin (Ig)M predisposes to development of IgG autoantibodies.

  • M R Ehrenstein‎ et al.
  • The Journal of experimental medicine‎
  • 2000‎

Serum immunoglobulin (Ig)M provides the initial response to foreign antigen and plays a regulatory role in subsequent immune response development, accelerating the production of high-affinity IgG. Here we show that mice deficient in serum IgM have an increased propensity to spontaneous autoimmunity as judged by the development with age of serum IgG anti-DNA antibodies and the renal deposition of IgG and complement. They also exhibit augmented anti-DNA IgG production on exposure to lipopolysaccharide. Thus, deficiency in serum IgM leads to diminished responsiveness to foreign antigens but increased responsiveness to self-a paradoxical association reminiscent of that described in humans deficient in complement or IgA. We wondered whether serum IgM might play an analogous role with regard to the response to self-antigens. However, here-in contrast to the sluggish response to foreign antigens-we find that deficiency in serum IgM actually predisposes to the development of IgG antibodies to autoantigens.


Unmutated immunoglobulin M can protect mice from death by influenza virus infection.

  • Yuichi Harada‎ et al.
  • The Journal of experimental medicine‎
  • 2003‎

To elucidate the role of class switch recombination (CSR) and somatic hypermutation (SHM) in virus infection, we have investigated the influence of the primary and secondary infections of influenza virus on mice deficient of activation-induced cytidine deaminase (AID), which is absolutely required for CSR and SHM. In the primary infection, AID deficiency caused no significant difference in mortality but did cause difference in morbidity. In the secondary infection with a lethal dose of influenza virus, both AID-/- and AID+/- mice survived completely. However, AID-/- mice could not completely block replication of the virus and their body weights decreased severely whereas AID+/- mice showed almost complete prevention from the reinfection. Depletion of CD8+ T cells by administration of an anti-CD8 monoclonal antibody caused slightly severer body weight loss but did not alter the survival rate of AID-/- mice in secondary infection. These results indicate that unmutated immunoglobulin (Ig)M alone is capable of protecting mice from death upon primary and secondary infections. Because the titers of virus-neutralizing antibodies were comparable between AID-/- and AID+/- mice at the time of the secondary infection, a defect of AID-/- mice in protection of morbidity might be due to the absence of either other Ig classes such as IgG, high affinity antibodies with SHM, or both.


A critical role of natural immunoglobulin M in immediate defense against systemic bacterial infection.

  • M Boes‎ et al.
  • The Journal of experimental medicine‎
  • 1998‎

To evaluate the role of natural immunoglobulin (Ig)M in the immediate response against microbial infection, we tested mutant mice that are deficient in secreted (s)IgM in an acute peritonitis model induced by cecal ligation and puncture (CLP). 20% of wild-type mice died within 32 h of CLP, whereas 70% of sIgM-deficient mice died within the same time period. The increased susceptibility was associated with a reduced level of tumor necrosis factor (TNF)-alpha, a decreased neutrophil recruitment and an increased bacterial load in the peritoneum, and elevated levels of endotoxin and proinflammatory cytokines in the circulation. Resistance to CLP by sIgM-deficient mice was restored by reconstitution with polyclonal IgM from normal mouse serum. Reconstitution with a monoclonal IgM specific to phosphatidylcholine, a conserved cell membrane component, has a modest effect but a monoclonal IgM specific to phosphocholine is not protective. These findings demonstrate a critical role of natural IgM in the immediate defense against severe bacterial infection.


B-1 cell development: evidence for an uncommitted immunoglobulin (Ig)M+ B cell precursor in B-1 cell differentiation.

  • S H Clarke‎ et al.
  • The Journal of experimental medicine‎
  • 1998‎

Murine phosphatidyl choline (PtC)-specific B cells in normal mice belong exclusively to the B-1 subset. Analysis of anti-PtC (VH12 and VH12/Vkappa4) transgenic (Tg) mice indicates that exclusion from B-0 (also known as B-2) occurs after immunoglobulin gene rearrangement. This predicts that PtC-specific B-0 cells are generated, but subsequently eliminated by either apoptosis or differentiation to B-1. To investigate the mechanism of exclusion, PtC-specific B cell differentiation was examined in mice expressing the X-linked immunodeficiency (xid) mutation. xid mice lack functional Bruton's tyrosine kinase (Btk), a component of the B cell receptor signal transduction pathway, and are deficient in B-1 cell development. We find in C57BL/ 6.xid mice that VH12 pre-BII cell selection is normal and that PtC-specific B cells undergo modest clonal expansion. However, the majority of splenic PtC-specific B cells in anti-PtC Tg/xid mice are B-0, rather than B-1 as in their non-xid counterparts. These data indicate that PtC-specific B-0 cell generation precedes segregation as predicted, and that Btk function is required for efficient segregation to B-1. Since xid mice exhibit defective B cell differentiation, not programmed cell death, these data are most consistent with an inability of PtC-specific B-0 cells to convert to B-1 and a single B cell lineage.


B-1 and B-2 cell-derived immunoglobulin M antibodies are nonredundant components of the protective response to influenza virus infection.

  • N Baumgarth‎ et al.
  • The Journal of experimental medicine‎
  • 2000‎

We have studied the role of secreted immunoglobulin (Ig)M in protection from infection with influenza virus and delineated the relative contributions of B-1 versus B-2 cell-derived IgM in this process. Mice deficient in secreted IgM but capable of expressing surface IgM and secreting other Ig classes show significantly reduced virus clearance and survival rates compared with wild-type controls. Irradiation chimeras in which only either B-1 or B-2 cells lack the ability to secrete IgM show mortality rates similar to those of mice in which neither B-1 nor B-2 cells secrete IgM. Dependence on both sources of IgM for survival is partially explained by findings in allotype chimeras that broadly cross-reactive B-1 cell-derived natural IgM is present before infection, whereas virus strain-specific, B-2 cell-derived IgM appears only after infection. Furthermore, lack of IgM secreted from one or both sources significantly impairs the antiviral IgG response. Reconstitution of chimeras lacking B-1 cell-derived IgM only with IgM-containing serum from noninfected mice improved both survival rates and serum levels of virus-specific IgG. Thus, virus-induced IgM must be secreted in the presence of natural IgM for efficient induction of specific IgG and for immune protection, identifying B-1 and B-2 cell-derived IgM antibodies as nonredundant components of the antiviral response.


I-PLA(2) activation during apoptosis promotes the exposure of membrane lysophosphatidylcholine leading to binding by natural immunoglobulin M antibodies and complement activation.

  • Sun Jun Kim‎ et al.
  • The Journal of experimental medicine‎
  • 2002‎

Deficiency of serum immunoglobulin (Ig)M is associated with the development of a lupus-like disease in mice. Recent studies suggest that classical complement components facilitate the clearance of apoptotic cells and that failure to do so predisposes mice to lupus. Since IgM is a potent activator of the classical complement pathway, we examined IgM binding to dying cells. IgM, but not IgG, bound to apoptotic T cells through the Fab' portion of the antibody. Exposure of apoptotic cell membranes to phospholipase (PL) A2 increased, whereas PLD reduced, IgM binding and complement activation. Absorption studies combined with direct plate binding assays, revealed that IgM antibodies failed to bind to phosphatidyl lipids, but did recognize lysophosphatidylcholine and the phosphorylcholine head group. Both iPLA(2) and cPLA(2) are activated during apoptosis. Since inhibition of iPLA2, but not cPLA2, attenuated IgM binding to apoptotic cells, these results strongly suggest that the endogenous calcium independent PLA(2), iPLA(2), is involved in the hydrolysis of plasma membrane phospholipids and exposure of the epitope(s) recognized by IgM. We propose that recognition of dying cells by natural IgM antibodies is, in part, responsible for complement activation on dying cells leading to their safe clearance.


Human immunoglobulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells.

  • U Klein‎ et al.
  • The Journal of experimental medicine‎
  • 1998‎

Immunoglobulin (Ig)M+IgD+ B cells are generally assumed to represent antigen-inexperienced, naive B cells expressing variable (V) region genes without somatic mutations. We report here that human IgM+IgD+ peripheral blood (PB) B cells expressing the CD27 cell surface antigen carry mutated V genes, in contrast to CD27-negative IgM+IgD+ B cells. IgM+IgD+CD27(+) B cells resemble class-switched and IgM-only memory cells in terms of cell phenotype, and comprise approximately 15% of PB B lymphocytes in healthy adults. Moreover, a very small population (<1% of PB B cells) of highly mutated IgD-only B cells was detected, which likely represent the PB counterpart of IgD-only tonsillar germinal center and plasma cells. Overall, the B cell pool in the PB of adults consists of approximately 40% mutated memory B cells and 60% unmutated, naive IgD+CD27(-) B cells (including CD5(+) B cells). In the somatically mutated B cells, VH region genes carry a two- to threefold higher load of somatic mutation than rearranged Vkappa genes. This might be due to an intrinsically lower mutation rate in kappa light chain genes compared with heavy chain genes and/or result from kappa light chain gene rearrangements in GC B cells. A common feature of the somatically mutated B cell subsets is the expression of the CD27 cell surface antigen which therefore may represent a general marker for memory B cells in humans.


The cohesin complex regulates immunoglobulin class switch recombination.

  • Anne-Sophie Thomas-Claudepierre‎ et al.
  • The Journal of experimental medicine‎
  • 2013‎

Immunoglobulin (Ig) class switch recombination (CSR) is initiated by the transcription-coupled recruitment of activation-induced cytidine deaminase (AID) to switch regions and by the subsequent generation of double-stranded DNA breaks (DSBs). These DNA breaks are ultimately resolved through the nonhomologous end joining (NHEJ) pathway. We show that during CSR, AID associates with subunits of cohesin, a complex previously implicated in sister chromatid cohesion, DNA repair, and the formation of DNA loops between enhancers and promoters. Furthermore, we implicate the cohesin complex in the mechanism of CSR by showing that cohesin is dynamically recruited to the Sμ-Cμ region of the IgH locus during CSR and that knockdown of cohesin or its regulatory subunits results in impaired CSR and increased usage of microhomology-based end joining.


Immunoglobulin E plays an immunoregulatory role in lupus.

  • Barbara Dema‎ et al.
  • The Journal of experimental medicine‎
  • 2014‎

The (patho)physiological role of IgE in nonallergic inflammatory diseases is not well understood. Here, we explored the effect of IgE deficiency on the inflammatory response in FcγRIIB-deficient mice as well as in mice carrying both a deletion of FcγRIIB and the chromosomal translocation of Y-linked autoimmune acceleration (Yaa) that hastens and results in a more aggressive lupuslike disease in these mice. The findings show that deficiency of IgE delays disease development and severity as demonstrated by reduced autoantibody production and amelioration of organ pathologies. This was associated with decreased numbers of plasma cells and reduced levels of IgG2b and IgG3. Unexpectedly, the loss of IgE also caused a striking decrease of immune cell infiltration in secondary lymphoid organs with a marked effect on the presence of dendritic cells, monocytes, neutrophils, and eosinophils in these organs and decreased activation of basophils. The presence of autoreactive IgE in human systemic lupus erythematosus subjects was also associated with increased basophil activation and enhanced disease activity. These findings argue that IgE facilitates the amplification of autoimmune inflammation.


Ikaros controls isotype selection during immunoglobulin class switch recombination.

  • MacLean Sellars‎ et al.
  • The Journal of experimental medicine‎
  • 2009‎

Class switch recombination (CSR) allows the humoral immune response to exploit different effector pathways through specific secondary antibody isotypes. However, the molecular mechanisms and factors that control immunoglobulin (Ig) isotype choice for CSR are unclear. We report that deficiency for the Ikaros transcription factor results in increased and ectopic CSR to IgG(2b) and IgG(2a), and reduced CSR to all other isotypes, regardless of stimulation. Ikaros suppresses active chromatin marks, transcription, and activation-induced cytidine deaminase (AID) accessibility at the gamma2b and gamma2a genes to inhibit class switching to these isotypes. Further, Ikaros directly regulates isotype gene transcription as it directly binds the Igh 3' enhancer and interacts with isotype gene promoters. Finally, Ikaros-mediated repression of gamma2b and gamma2a transcription promotes switching to other isotype genes by allowing them to compete for AID-mediated recombination at the single-cell level. Thus, our results reveal transcriptional competition between constant region genes in individual cells to be a critical and general mechanism for isotype specification during CSR. We show that Ikaros is a master regulator of this competition.


Evidence for class-specific factors in immunoglobulin isotype switching.

  • A Shanmugam‎ et al.
  • The Journal of experimental medicine‎
  • 2000‎

Immunoglobulin class switch recombination (SR) occurs by a B cell-specific, intrachromosomal deletional process between switch regions. We have developed a plasmid-based transient transfection assay for SR to test for the presence of transacting switch activities. The plasmids are novel in that they lack a eukaryotic origin of DNA replication. The recombination activity of these switch substrates is restricted to a subset of B cell lines that support isotype switching on their endogenous loci and to mitogen-activated normal splenic B cells. The factors required for extrachromosomal plasmid recombination are constitutively expressed in proliferating splenic B cells and in B cell lines capable of inducibly undergoing immunoglobulin SR on their chromosomal genes. These studies suggest that mitogens that induce switching on the chromosome induce accessibility rather than switch recombinase activity. Finally, we provide evidence for two distinct switching activities which independently mediate mu-->alpha and mu-->gamma3 SR.


Enhancer complexes located downstream of both human immunoglobulin Calpha genes.

  • F C Mills‎ et al.
  • The Journal of experimental medicine‎
  • 1997‎

To investigate regulation of human immunoglobulin heavy chain expression, we have cloned DNA downstream from the two human Calpha genes, corresponding to the position in the mouse IgH cluster of a locus control region (LCR) that includes an enhancer which regulates isotype switching. Within 25 kb downstream of both the human immunoglobulin Calpha1 and Calpha2 genes we identified several segments of DNA which display B lymphoid-specific DNase I hypersensitivity as well as enhancer activity in transient transfections. The corresponding sequences downstream from each of the two human Calpha genes are nearly identical to each other. These enhancers are also homologous to three regions which lie in similar positions downstream from the murine Calpha gene and form the murine LCR. The strongest enhancers in both mouse and human have been designated HS12. Within a 135-bp core homology region, the human HS12 enhancers are approximately 90% identical to the murine homolog and include several motifs previously demonstrated to be important for function of the murine enhancer; additional segments of high sequence conservation suggest the possibility of previously unrecognized functional motifs. On the other hand, certain functional elements in the murine enhancer, including a B cell-specific activator protein site, do not appear to be conserved in human HS12. The human homologs of the murine enhancers designated HS3 and HS4 show lower overall sequence conservation, but for at least two of the functional motifs in the murine HS4 (a kappaB site and an octamer motif ) the human HS4 homologs are exactly conserved. An additional hypersensitivity site between human HS3 and HS12 in each human locus displays no enhancer activity on its own, but includes a region of high sequence conservation with mouse, suggesting the possibility of another novel functional element.


Immunoglobulin class switch recombination is impaired in Atm-deficient mice.

  • Joanne M Lumsden‎ et al.
  • The Journal of experimental medicine‎
  • 2004‎

Immunoglobulin class switch recombination (Ig CSR) involves DNA double strand breaks (DSBs) at recombining switch regions and repair of these breaks by nonhomologous end-joining. Because the protein kinase ataxia telengiectasia (AT) mutated (ATM) plays a critical role in DSB repair and AT patients show abnormalities of Ig isotype expression, we assessed the role of ATM in CSR by examining ATM-deficient mice. In response to T cell-dependent antigen (Ag), Atm-/- mice secreted substantially less Ag-specific IgA, IgG1, IgG2b, and IgG3, and less total IgE than Atm+/+ controls. To determine whether Atm-/- B cells have an intrinsic defect in their ability to undergo CSR, we analyzed in vitro responses of purified B cells. Atm-/- cells secreted substantially less IgA, IgG1, IgG2a, IgG3, and IgE than wild-type (WT) controls in response to stimulation with lipopolysaccharide, CD40 ligand, or anti-IgD plus appropriate cytokines. Molecular analysis of in vitro responses indicated that WT and Atm-/- B cells produced equivalent amounts of germline IgG1 and IgE transcripts, whereas Atm-/- B cells produced markedly reduced productive IgG1 and IgE transcripts. The reduction in isotype switching by Atm-/- B cells occurs at the level of genomic DNA recombination as measured by digestion-circularization PCR. Analysis of sequences at CSR sites indicated that there is greater microhomology at the mu-gamma1 switch junctions in ATM B cells than in wild-type B cells, suggesting that ATM function affects the need or preference for sequence homology in the CSR process. These findings suggest a role of ATM in DNA DSB recognition and/or repair during CSR.


Counterselection against D mu is mediated through immunoglobulin (Ig)alpha-Igbeta.

  • S Gong‎ et al.
  • The Journal of experimental medicine‎
  • 1996‎

The pre-B cell receptor is a key checkpoint regulator in developing B cells. Early events that are controlled by the pre-B cell receptor include positive selection for cells express membrane immunoglobulin heavy chains and negative selection against cells expressing truncated immunoglobulins that lack a complete variable region (D mu). Positive selection is known to be mediated by membrane immunoglobulin heavy chains through Ig alpha-Ig beta, whereas the mechanism for counterselection against D mu has not been determined. We have examined the role of the Ig alpha-Ig beta signal transducers in counterselection against D mu using mice that lack Ig beta. We found that D mu expression is not selected against in developing B cells in Ig beta mutant mice. Thus, the molecular mechanism for counterselection against D mu in pre-B cells resembles positive selection in that it requires interaction between mD mu and Ig alpha-Ig beta.


Immunoglobulin G-mediated inflammatory responses develop normally in complement-deficient mice.

  • D Sylvestre‎ et al.
  • The Journal of experimental medicine‎
  • 1996‎

The role of complement in immunoglobulin G-triggered inflammation was studied in mice genetically deficient in complement components C3 and C4. Using the reverse passive Arthus reaction and experimental models of immune hemolytic anemia and immune thrombocytopenia, we show that these mice have types II and III inflammatory responses that are indistinguishable from those of wild-type animals. Complement-deficient and wild-type animals exhibit comparable levels of erythrophagocytosis and platelet clearance in response to cytotoxic anti-red blood cell and antiplatelet antibodies. Furthermore, in the reverse passive Arthus reaction, soluble immune complexes induce equivalent levels of hemmorhage, edema, and neutrophillic infiltration in complement-deficient and wild-type animals. In contrast, mice that are genetically deficient in the expression of Fc receptors exhibit grossly diminished reactions by both cytotoxic antibodies and soluble immune complexes. These studies provide strong evidence that the activation of cell-based Fc gamma R receptors, but not complement, are required for antibody-triggered murine inflammatory responses.


Mechanism of DNA resection during intrachromosomal recombination and immunoglobulin class switching.

  • Anne Bothmer‎ et al.
  • The Journal of experimental medicine‎
  • 2013‎

DNA double-strand breaks (DSBs) are byproducts of normal cellular metabolism and obligate intermediates in antigen receptor diversification reactions. These lesions are potentially dangerous because they can lead to deletion of genetic material or chromosome translocation. The chromatin-binding protein 53BP1 and the histone variant H2AX are required for efficient class switch (CSR) and V(D)J recombination in part because they protect DNA ends from resection and thereby favor nonhomologous end joining (NHEJ). Here, we examine the mechanism of DNA end resection in primary B cells. We find that resection depends on both CtBP-interacting protein (CtIP, Rbbp8) and exonuclease 1 (Exo1). Inhibition of CtIP partially rescues the CSR defect in 53BP1- and H2AX-deficient lymphocytes, as does interference with the RecQ helicases Bloom (Blm) and Werner (Wrn). We conclude that CtIP, Exo1, and RecQ helicases contribute to the metabolism of DNA ends during DSB repair in B lymphocytes and that minimizing resection favors efficient CSR.


Immunoglobulin E-dependent active fatal anaphylaxis in mast cell-deficient mice.

  • I H Choi‎ et al.
  • The Journal of experimental medicine‎
  • 1998‎

Mast cells have long been believed to be the central effector cells in the development of immunoglobulin (Ig)E-dependent anaphylaxis. In this study, we investigated the role of mast cells in IgE-dependent hapten-induced active fatal anaphylaxis using mast cell-deficient WBB6F1- W/Wv (W/Wv) and congenic normal (+/+) mice. Although a 5-min delay in shock signs and death were observed in W/Wv mice, 100% fatal reactions to penicillin V (Pen V) occurred in both +/+ and W/Wv mice. Administration of monoclonal anti-IL-4 antibody completely prevented the fatal reactions, and the effect of anti-IL-4 was associated with its suppressive activity on Pen V-specific serum levels of IgE, but not IgG. The platelet-activating factor (PAF) antagonist, BN 50739, completely prevented the fatal reactions in both strains of mice. Our kinetic study revealed, in contrast to no elevation of plasma histamine level in W/Wv mice, high levels of PAF in the circulation after challenge in both +/+ and W/Wv mice, albeit to a lesser degree in the latter case. These data indicate that cells other than mast cells are sufficient to induce an IgE-dependent active fatal anaphylaxis by elaborating PAF, which is the critical mediator for fatal murine anaphylaxis.


Negative regulation of immunoglobulin E-dependent allergic responses by Lyn kinase.

  • Sandra Odom‎ et al.
  • The Journal of experimental medicine‎
  • 2004‎

A role for Lyn kinase as a positive regulator of immunoglobulin (Ig)E-dependent allergy has long been accepted. Contrary to this belief, Lyn kinase was found to have an important role as a negative regulator of the allergic response. This became apparent from the hyperresponsive degranulation of lyn-/- bone marrow-derived mast cells, which is driven by hyperactivation of Fyn kinase that occurs, in part, through the loss of negative regulation by COOH-terminal Src kinase (Csk) and the adaptor, Csk-binding protein. This phenotype is recapitulated in vivo as young lyn-/- mice showed an enhanced anaphylactic response. In vivo studies also demonstrated that as lyn-/- mice aged, their serum IgE increased as well as occupancy of the high affinity IgE receptor (FcepsilonRI). This was mirrored by increased circulating histamine, increased mast cell numbers, increased cell surface expression of the high affinity IgE receptor (FcepsilonRI), and eosinophilia. The increased IgE production was not a consequence of increased Fyn kinase activity in lyn-/- mice because both lyn-/- and lyn-/- fyn-/- mice showed high IgE levels. Thus, lyn-/- mice and mast cells thereof show multiple allergy-associated traits, causing reconsideration of the possible efficacy in therapeutic targeting of Lyn in allergic disease.


Epitope-specific antibody response is controlled by immunoglobulin V(H) polymorphisms.

  • Bruno Raposo‎ et al.
  • The Journal of experimental medicine‎
  • 2014‎

Autoantibody formation is essential for the development of certain autoimmune diseases like rheumatoid arthritis (RA). Anti-type II collagen (CII) antibodies are found in RA patients; they interact with cartilage in vivo and are often highly pathogenic in the mouse. Autoreactivity to CII is directed to multiple epitopes and conserved between mice and humans. We have previously mapped the antibody response to CII in a heterogeneous stock cohort of mice, with a strong association with the IgH locus. We positioned the genetic polymorphisms and determined the structural requirements controlling antibody recognition of one of the major CII epitopes. Polymorphisms at positions S31R and W33T of the associated variable heavy chain (VH) allele were identified and confirmed by gene sequencing. The Fab fragment binding the J1 epitope was crystallized, and site-directed mutagenesis confirmed the importance of those two variants for antigen recognition. Back mutation to germline sequence provided evidence for a preexisting recognition of the J1 epitope. These data demonstrate a genetic association of epitope-specific antibody responses with specific VH alleles, and it highlights the importance of germline-encoded antibodies in the pathogenesis of antibody-mediated autoimmune diseases.


Signal transduction by immunoglobulin is mediated through Ig alpha and Ig beta.

  • M Sanchez‎ et al.
  • The Journal of experimental medicine‎
  • 1993‎

Immunoglobulin (Ig) antigen receptors are composed of a noncovalently-associated complex of Ig and two other proteins, Ig alpha and Ig beta. The cytoplasmic domain of both of these Ig associated proteins contains a consensus sequence that is shared with the signaling proteins of the T cell and Fc receptor. To test the idea that Ig alpha-Ig beta heterodimers are the signaling components of the Ig receptor, we have studied Ig mutations that interfere with signal transduction. We find that specific mutations in the transmembrane domain of Ig that inactivate Ca2+ and phosphorylation responses also uncouple IgM from Ig alpha-Ig beta. These results define amino acid residues that are essential for the assembly of the Ig receptor. Further, receptor activity can be fully reconstituted in Ca2+ flux and phosphorylation assays by fusing the cytoplasmic domain of Ig alpha with the mutant Igs. In contrast, fusion of the cytoplasmic domain of Ig beta to the inactive Ig reconstitutes only Ca2+ responses. Thus, Ig alpha and Ig beta are both necessary and sufficient to mediate signal transduction by the Ig receptor in B cells. In addition, our results suggest that Ig alpha and Ig beta can activate different signaling pathways.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: