Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 148 papers

Immunogenicity of anthrax recombinant peptides and killed spores in goats and protective efficacy of immune sera in A/J mouse model.

  • Okechukwu C Ndumnego‎ et al.
  • Scientific reports‎
  • 2018‎

Anthrax is primarily recognized as an affliction of herbivores with incubation period ranging from three to five days post-infection. Currently, the Sterne live-spore vaccine is the only vaccine approved for control of the disease in susceptible animals. While largely effective, the Sterne vaccine has several problems including adverse reactions in sensitive species, ineffectiveness in active outbreaks and incompatibility with antibiotics. These can be surmounted with the advent of recombinant peptides (non-living) next generation vaccines. The candidate vaccine antigens comprised of recombinant protective antigen (PA), spore-specific antigen (bacillus collagen-like protein of anthracis, BclA) and formaldehyde inactivated spores (FIS). Presently, little information exists on the protectivity of these novel vaccine candidates in susceptible ruminants. Thus, this study sought to assess the immunogenicity of these vaccine candidates in goats and evaluate their protectivity using an in vivo mouse model. Goats receiving a combination of PA, BclA and FIS yielded the highest antibody and toxin neutralizing titres compared to recombinant peptides alone. This was also reflected in the passive immunization experiment whereby mice receiving immune sera from goats vaccinated with the antigen combination had higher survival post-challenge. In conclusion, the current data indicate promising potential for further development of non-living anthrax vaccines in ruminants.


In-vitro NET-osis induced by COVID-19 sera is associated to severe clinical course in not vaccinated patients and immune-dysregulation in breakthrough infection.

  • Alessandra Romano‎ et al.
  • Scientific reports‎
  • 2022‎

Since neutrophil extracellular traps formation (NET-osis) can be assessed indirectly by treating healthy neutrophils with blood-derived fluids from patients and then measuring the NETs response, we designed a pilot study to convey high-dimensional cytometry of peripheral blood immune cells and cytokines, combined with clinical features, to understand if NET-osis assessment could be included in the immune risk profiling to early prediction of clinical patterns, disease severity, and viral clearance at 28 days in COVID-19 patients. Immune cells composition of peripheral blood, cytokines concentration and in-vitro NETosis were detected in peripheral blood of 41 consecutive COVID-19 inpatients, including 21 mild breakthrough infections compared to 20 healthy donors, matched for sex and age. Major immune dysregulation in peripheral blood in not-vaccinated COVID-19 patients compared to healthy subjects included: a significant reduction of percentage of unswitched memory B-cells and transitional B-cells; loss of naïve CD3+CD4+CD45RA+ and CD3+CD8+CD45RA+ cells, increase of IL-1β, IL-17A and IFN-γ. Myeloid compartment was affected as well, due to the increase of classical (CD14++CD16-) and intermediate (CD14++CD16+) monocytes, overexpressing the activation marker CD64, negatively associated to the absolute counts of CD8+ CD45R0+ cells, IFN-γ and IL-6, and expansion of monocytic-like myeloid derived suppressor cells. In not-vaccinated patients who achieved viral clearance by 28 days we found at hospital admission lower absolute counts of effector cells, namely CD8+T cells, CD4+ T-cells and CD4+CD45RO+ T cells. Percentage of in-vitro NET-osis induced by patients' sera and NET-osis density were progressively higher in moderate and severe COVID-19 patients than in mild disease and controls. The percentage of in-vitro induced NET-osis was positively associated to circulating cytokines IL-1β, IFN-γ and IL-6. In breakthrough COVID-19 infections, characterized by mild clinical course, we observed increased percentage of in-vitro NET-osis, higher CD4+ CD45RO+ and CD8+ CD45RO+ T cells healthy or mild-COVID-19 not-vaccinated patients, reduced by 24 h of treatment with ACE inhibitor ramipril. Taken together our data highlight the role of NETs in orchestrating the complex immune response to SARS-COV-2, that should be considered in a multi-target approach for COVID-19 treatment.


Mutational induction in SARS-CoV-2 major lineages by experimental exposure to neutralising sera.

  • Martina Brandolini‎ et al.
  • Scientific reports‎
  • 2022‎

The ongoing evolution of SARS-CoV-2 and the emergence of new viral variants bearing specific escape mutations responsible for immune evasion from antibody neutralisation has required a more accurate characterisation of the immune response as one of the evolutive forces behind viral adaptation to a largely immunised human population. In this work, culturing in the presence of neutralising sera vigorously promoted mutagenesis leading to the acquisition of known escape mutations on the spike as well as new presumptive escape mutations on structural proteins whose role as target of the neutralizing antibody response might have been thus far widely neglected. From this perspective, this study, in addition to tracing the past evolution of the species back to interactions with neutralising antibody immune response, also offers a glimpse into future evolutive scenarios.


Pre-operative sera interleukin-6 in the diagnosis of high-grade serous ovarian cancer.

  • Nirmala Chandralega Kampan‎ et al.
  • Scientific reports‎
  • 2020‎

Pre-operative discrimination of malignant masses is crucial for accurate diagnosis and prompt referral to a gynae oncology centre for optimal surgical intervention. HGSOC progression is correlated with local and systemic inflammation. We hypothesised that inclusion of inflammatory biomarkers in sera may improve diagnostic tests. In the training cohort, we tested four existing clinical tests (RMI score and ROMA, CA125 and HE4) and a panel of 28 immune soluble biomarkers in sera from 66 patients undergoing surgery for suspected ovarian cancer. Six promising immune biomarkers alone, or in combination with conventional tests, were subsequently analysed in an independent validation cohort (n = 69). IL-6 was identified as the main driver of variability followed closely by conventional diagnostic tests. Median sera IL-6 was higher in HGSOC patients compared to those with a benign mass or controls with normal ovaries (28.3 vs 7.3 vs 1.2 pg/ml, p < 0.0001). The combination of IL-6 further improved the overall predictive probability of the conventional tests. Modelling a two-step triage of women with a suspicious ovarian mass, with IL-6 > 3.75 pg/ml as primary triage followed by conventional tests (CA125 or RMI score) identified ovarian cancer in patients with a misclassification rate of 4.54-3.03%, superior to the use of CA125 or RMI alone (9.09 to 10.60). The validation cohort demonstrated a similar improvement in the diagnostic sensitivity following addition of IL-6. IL-6 in combination with conventional tests may be a useful clinical biomarker for triage of patients with a suspected malignant ovarian mass.


Specific autoantigens identified by sera obtained from mice that are immunized with testicular germ cells alone.

  • Hayato Terayama‎ et al.
  • Scientific reports‎
  • 2016‎

There are various autoimmunogenic antigens (AIs) in testicular germ cells (TGCs) recognized as foreign by the body's immune system. However, there is little information of TGC-specific AIs being available. The aim of this study is to identify TGC-specific AIs. We have previously established that immunization using viable syngeneic TGC can also induce murine experimental autoimmune orchitis (EAO) without using any adjuvant. This study is to identify TGC-specific AIs by TGC liquid chromatography-tandem mass spectrometry analysis, followed by two-dimensional gel electrophoresis that reacted with serum IgG from EAO mice. In this study, we identified 11 TGC-specific AIs that reacted with serum from EAO mice. Real-time RT-PCR analysis showed that the mRNA expressions of seven TGC-specific AIs were significantly higher in only mature testis compared to other organs. Moreover, the recombinant proteins of identified 10 (except unnamed protein) TGC-specific AIs were created by using human embryonic kidney 293 (HEK293) cells and these antigencities were reconfirmed by Western blot using EAO serum reaction. These results indicated Atp6v1a, Hsc70t, Fbp1 and Dazap1 were candidates for TGC-specific AIs. Identification of these AIs will facilitate new approaches for understanding infertility and cancer pathogenesis and may provide a basis for the development of novel therapies.


Evolution of full-length genomes of HBV quasispecies in sera of patients with a coexistence of HBsAg and anti-HBs antibodies.

  • Tai-Cheng Zhou‎ et al.
  • Scientific reports‎
  • 2017‎

Although the evolutionary changes of viral quasispecies are correlated to the pathological status of a disease, little is known in the coexistence of hepatitis B surface antigen (HBsAg) and antibodies to these antigens (anti-HBs). To examine evolutionary changes in hepatitis B virus (HBV) and their relationship to the coexistence of HBsAg and anti-HBs antibodies, HBV genomes in patients with a coexistence of HBsAg and anti-HBs antibodies (experimental group) and HBsAg positive without anti-HBs (control group) were assessed. Our results showed that quasispecies diversity was significantly higher in the experimental group for large HBsAg (LHBsAg), middle HBsAg (MHBsAg), and HBsAg genes. LHBsAg harbored dN/dS values eight times higher in the experimental group; however, the mean dN/dS ratios in genes HbxAg, Pol and PreC/C of the experimental patients had an opposite trend. Phylogenetic trees in the experimental group were more complex than the control group. More positive selection sites, mutations and deletions were observed in the experimental group in specific regions. Furthermore, several amino acid variants in epitopes were potentially associated with the immune evasion. In conclusion, cumulative evolutionary changes in HBV genome that facilitate immune evasion provide insights into the genetic mechanism of a coexistence of HBsAg and anti-HBs antibodies.


Massage-like stroking boosts the immune system in mice.

  • Benjamin Major‎ et al.
  • Scientific reports‎
  • 2015‎

Recent clinical evidence suggests that the therapeutic effect of massage involves the immune system and that this can be exploited as an adjunct therapy together with standard drug-based approaches. In this study, we investigated the mechanisms behind these effects exploring the immunomodulatory function of stroking as a surrogate of massage-like therapy in mice. C57/BL6 mice were stroked daily for 8 days either with a soft brush or directly with a gloved hand and then analysed for differences in their immune repertoire compared to control non-stroked mice. Our results show that hand- but not brush-stroked mice demonstrated a significant increase in thymic and splenic T cell number (p < 0.05; p < 0.01). These effects were not associated with significant changes in CD4/CD8 lineage commitment or activation profile. The boosting effects on T cell repertoire of massage-like therapy were associated with a decreased noradrenergic innervation of lymphoid organs and counteracted the immunosuppressive effect of hydrocortisone in vivo. Together our results in mice support the hypothesis that massage-like therapies might be of therapeutic value in the treatment of immunodeficiencies and related disorders and suggest a reduction of the inhibitory noradrenergic tone in lymphoid organs as one of the possible explanations for their immunomodulatory function.


Immune dysregulation in patients with carpal tunnel syndrome.

  • Gila Moalem-Taylor‎ et al.
  • Scientific reports‎
  • 2017‎

Peripheral immunity plays a key role in maintaining homeostasis and conferring crucial neuroprotective effects on the injured nervous system, while at the same time may contribute to increased vulnerability to neuropathic pain. Little is known about the reciprocal relationship between entrapment neuropathy and peripheral immunity. This study investigated immune profile in patients with carpal tunnel syndrome (CTS), the most prevalent entrapment neuropathy. All patients exhibited neurophysiological abnormalities in the median nerve, with the majority reporting neuropathic pain symptoms. We found a significant increase in serum CCL5, CXCL8, CXCL10 and VEGF, and in CD4+ central and effector memory T cells in CTS patients, as compared to healthy controls. CCL5 and VEGF were identified as having the highest power to discriminate between patients and controls. Interestingly, and contrary to the prevailing view of CCL5 as a pro-nociceptive factor, the level of circulating CCL5 was inversely correlated with neuropathic pain intensity and median nerve motor latency. In contrast, the level of central memory T cells was positively associated with abnormal neurophysiological findings. These results suggest that entrapment neuropathy is associated with adaptive changes in the homeostasis of memory T cells and an increase in systemic inflammatory modulating cytokines/chemokines, which potentially regulate neuropathic symptoms.


Erythropoietin treatment in murine multiple myeloma: immune gain and bone loss.

  • Naamit Deshet-Unger‎ et al.
  • Scientific reports‎
  • 2016‎

Multiple myeloma (MM) is a plasma cell malignancy, characterized by osteolytic lesions and monoclonal immunoglobulins. The anemia, accompanying the disease is often treated with recombinant human EPO. Diverse non-erythropoietic effects of EPO have led us to question its combined action on the immune system and bone in the 5T33MM mouse model. EPO administration to MM mice attenuated disease progression as demonstrated by a decrease in serum MM IgG2b, splenic CD138 expressing cells, IL-6 and RORγτ transcripts in bone marrow (BM). IFN-γ transcript levels and macrophages (F4/80(+)CD11b(+)) in the BM both increased ~1.5 fold in the EPO-treated MM mice. In-vitro, EPO stimulated phagocytosis of 5T33MM cells (+30%) by BM-derived macrophages. In contrast, high-resolution microCT analysis of distal femurs revealed EPO-associated bone loss in both healthy and 5T33MM mice. EPO significantly increased expression of the osteoclastogenic nuclear factor-kappa B ligand (RANKL) in healthy mice, but not in MM mice, likely due to antagonizing effects on MM progression. Thus, in MM, EPO may act as a double-edged-sword stimulating immune response, while accelerating bone resorption, possibly via direct action on BM macrophages. This study supports a prudent approach of treating anemia in MM patients, aiming to maintain EPO-associated anti-MM effects, while considering bone damage.


Sex-specific maternofetal innate immune responses triggered by group B Streptococci.

  • Marie-Julie Allard‎ et al.
  • Scientific reports‎
  • 2019‎

Group B Streptococcus (GBS) is one of the most common bacteria isolated in human chorioamnionitis, which is a major risk factor for premature birth and brain injuries. Males are at greater risk than females for developing lifelong neurobehavioural disorders, although the origins of this sex bias remain poorly understood. We previously showed that end-gestational inflammation triggered by GBS led to early neurodevelopmental impairments mainly in the male rat progeny. Identifying key inflammatory players involved in maternofetal immune activation by specific pathogens is critical to develop appropriate novel therapeutic interventions. We aimed to map out the GBS-induced profile of innate immune biomarkers in the maternal-placental-fetal axis, and to compare this immune profile between male and female tissues. We describe here that the GBS-induced immune signalling involved significantly higher levels of interleukin (IL)-1β, cytokine-induced neutrophil chemoattractant-1 (CINC-1/CXCL1) and polymorphonuclear cells (PMNs) infiltration in male compared to female maternofetal tissues. Although male - but not female - fetuses presented increased levels of IL-1β, fetuses from both sexes in-utero exposed to GBS had increased levels of TNF-α in their circulation. Levels of IL-1β detected in fetal sera correlated positively with the levels found in maternal circulation. Here, we report for the first time that the maternofetal innate immune signalling induced by GBS presents a sexually dichotomous profile, with more prominent inflammation in males than females. These sex-specific placental and fetal pro-inflammatory responses are in keeping with the higher susceptibility of the male population for preterm birth, brain injuries and neurodevelopmental disorders such as cerebral palsy and autism spectrum disorders.


Immune-responsiveness of CD4+ T cells during Streptococcus suis serotype 2 infection.

  • Marie-Pier Lecours‎ et al.
  • Scientific reports‎
  • 2016‎

The pathogenesis of Streptococcus suis infection, a major swine and human pathogen, is only partially understood and knowledge on the host adaptive immune response is critically scarce. Yet, S. suis virulence factors, particularly its capsular polysaccharide (CPS), enable this bacterium to modulate dendritic cell (DC) functions and potentially impair the immune response. This study aimed to evaluate modulation of T cell activation during S. suis infection and the role of DCs in this response. S. suis-stimulated total mouse splenocytes readily produced TNF-α, IL-6, IFN-γ, CCL3, CXCL9, and IL-10. Ex vivo and in vivo analyses revealed the involvement of CD4+ T cells and a Th1 response. Nevertheless, during S. suis infection, levels of the Th1-derived cytokines TNF-α and IFN-γ were very low. A transient splenic depletion of CD4+ T cells and a poor memory response were also observed. Moreover, CD4+ T cells secreted IL-10 and failed to up-regulate optimal levels of CD40L and CD69 in coculture with DCs. The CPS hampered release of several T cell-derived cytokines in vitro. Finally, a correlation was established between severe clinical signs of S. suis disease and impaired antibody responses. Altogether, these results suggest S. suis interferes with the adaptive immune response.


Cholestasis induced liver pathology results in dysfunctional immune responses after arenavirus infection.

  • Elisabeth Lang‎ et al.
  • Scientific reports‎
  • 2018‎

Immune responses are critical for defense against pathogens. However, prolonged viral infection can result in defective T cell immunity, leading to chronic viral infection. We studied immune activation in response to arenavirus infection during cholestasis using bile duct ligation (BDL). We monitored T cell responses, virus load and liver pathology markers after infection with lymphocytic choriomeningitis virus (LCMV). BDL mice failed to induce protective anti-viral immunity against LCMV and consequently exhibited chronic viral infection. BDL mice exhibited reduced anti-viral T cell immunity as well as reduced type 1 interferon production early after LCMV infection. Consistently, the presence of serum from BDL mice reduced the responsiveness of dendritic cell (DC) and T cell cultures when compared to Sham controls. Following fractionation and mass spectrometry analyses of sera, we identified several serum factors to be upregulated following BDL including bilirubin, bile acids, 78 kDa Glucose regulated protein (GRP78) and liver enzymes. Bilirubin and GRP78 were capable of inhibiting DC and T cell activation. In this work, we demonstrate that liver damage mediated by cholestasis results in defective immune induction following arenavirus infection.


Direct antiviral properties of TLR ligands against HBV replication in immune-competent hepatocytes.

  • Julie Lucifora‎ et al.
  • Scientific reports‎
  • 2018‎

Current therapies for chronic hepatitis B virus (HBV) infections are effective at decreasing the viral load in serum, but do not lead to viral eradication. Recent studies highlighted the therapeutic or "adjuvant" potential of immune-modulators. Our aim was to explore the direct anti-HBV effect of Toll-Like-Receptors (TLR) agonists in hepatocytes. HBV-infected primary human hepatocytes (PHH) or differentiated HepaRG cells (dHepaRG) were treated with various TLR agonists. Amongst all TLR ligands tested, Pam3CSK4 (TLR1/2-ligand) and poly(I:C)-(HMW) (TLR3/MDA5-ligand) were the best at reducing all HBV parameters. No or little viral rebound was observed after treatment arrest, implying a long-lasting effect on cccDNA. We also tested Riboxxol that features improved TLR3 specificity compared to poly(I:C)-(HMW). This agonist demonstrated a potent antiviral effect in HBV-infected PHH. Whereas, poly(I:C)-(HMW) and Pam3CSK4 mainly induced the expression of classical genes from the interferon or NF-κB pathway respectively, Riboxxol had a mixed phenotype. Moreover, TLR2 and TLR3 ligands can activate hepatocytes and immune cells, as demonstrated by antiviral cytokines produced by stimulated hepatocytes and peripheral blood mononuclear cells. In conclusion, our data highlight the potential of innate immunity activation in the direct control of HBV replication in hepatocytes, and support the development of TLR-based antiviral strategies.


Humoral immune response and delayed-type hypersensitivity in rabbits infected with Trypanosoma equiperdum.

  • Tiziana Di Febo‎ et al.
  • Scientific reports‎
  • 2020‎

Trypanosoma equiperdum is the causative agent of dourine, a parasitic venereal disease of equids. In this work, rabbits were infected with T. equiperdum strain OVI; serological tests (complement fixation test, ELISA and immunoblotting), used for the diagnosis of dourine in horses, were applied to study rabbit humoral immune response and to characterise T. equiperdum antigen pattern recognised by antibodies from infected rabbits. Moreover a protein extract of T. equiperdum strain OVI was produced and tested in skin tests on infected rabbits to detect the cell-mediated response induced by T. equiperdum, in order to evaluate its use in the field diagnosis of dourine. Sera of infected rabbits recognized in immunoblotting Trypanosoma protein bands with molecular weight below 37 kDa, providing a serological response comparable with that already observed in dourine infected horses. Moreover the trypanosome protein extract was capable to produce in vivo delayed-type hypersensitivity (DHT Type IV) in rabbits and proved itself to be non-toxic and non-sensitizing.


Immune responses following the first dose of the Sputnik V (Gam-COVID-Vac).

  • Chandima Jeewandara‎ et al.
  • Scientific reports‎
  • 2022‎

As the first dose of Gam-COVID-Vac, is currently used as a single dose vaccine in some countries, we investigated the immunogenicity of this at 4 weeks (327 naïve individuals). 88.7% seroconverted, with significantly lower seroconversion rates in those over 60 years (p = 0.004) and significantly lower than previously seen with AZD1222 (p = 0.018). 82.6% developed ACE2 receptor blocking antibodies, although levels were significantly lower than following natural infection (p = 0.0009) and a single dose of AZD1222 (p < 0.0001). Similar titres of antibodies were observed to the receptor binding domain of WT, B.1.1.7 and B.1.617.2 compared to AZD1222, while the levels for B.1.351 were significantly higher (p = 0.006) for Gam-COVID-Vac. 30% developed ex vivo IFNγ ELISpot responses (significantly lower than AZD1222), and high frequency of CD107a expressing T cells along with memory B cell responses. Although single dose of Gam-COVID-Vac was highly immunogenic, administration of a second dose is likely to be beneficial.


Oxidative Stress and Immune Responses During Hepatitis C Virus Infection in Tupaia belangeri.

  • Mohammad Enamul Hoque Kayesh‎ et al.
  • Scientific reports‎
  • 2017‎

Hepatitis C virus (HCV) is a leading cause of chronic liver disease, cirrhosis, and hepatocellular carcinoma. To address the molecular basis of HCV pathogenesis using tupaias (Tupaia belangeri), we characterized host responses upon HCV infection. Adult tupaias were infected with HCV genotypes 1a, 1b, 2a, or 4a. Viral RNA, alanine aminotransferase, anti-HCV core and anti-nonstructural protein NS3 antibody titres, reactive oxygen species (ROS), and anti-3β-hydroxysterol-Δ24reductase (DHCR24) antibody levels were measured at 2-week intervals from 0 to 41 weeks postinfection. All HCV genotypes established infections and showed intermittent HCV propagation. Moreover, all tupaias produced anti-core and anti-NS3 antibodies. ROS levels in sera and livers were significantly increased, resulting in induction of DHCR24 antibody production. Similarly, lymphocytic infiltration, disturbance of hepatic cords, and initiation of fibrosis were observed in livers from HCV-infected tupaias. Intrahepatic levels of Toll-like receptors 3, 7, and 8 were significantly increased in all HCV-infected tupaias. However, interferon-β was only significantly upregulated in HCV1a- and HCV2a-infected tupaias, accompanied by downregulation of sodium taurocholate cotransporting polypeptide. Thus, our findings showed that humoral and innate immune responses to HCV infection, ROS induction, and subsequent increases in DHCR24 auto-antibody production occurred in our tupaia model, providing novel insights into understanding HCV pathogenesis.


Severe allo-immune antibody-associated peripheral and central nervous system diseases after allogeneic hematopoietic stem cell transplantation.

  • Martin W Hümmert‎ et al.
  • Scientific reports‎
  • 2021‎

Allogeneic hematopoietic stem cell transplantation (alloHSCT) is a curative treatment for hematologic malignancies. Acute and chronic graft-versus-host disease (GvHD) are the major immune-mediated complications after alloHSCT. However, there is controversy whether neurologic complications after alloHSCT might represent manifestations of GvHD. We report three patients who acquired distinct, severe immune-mediated peripheral or central nervous system diseases after alloHSCT without other, concomitant GvHD manifestations. One patient had been diagnosed with B-cell chronic lymphocytic leukemia and two patients with high risk myelodysplastic syndrome. Patient #1 presented as LGI1- and GAD-IgG positive immune-mediated encephalitis, patient #2 was diagnosed with MOG-IgG positive encephalomyelitis, and patient #3 had chronic inflammatory polyneuropathy associated with SSA(Ro)-IgG positive Sjögren's syndrome. 100% donor chimerism was detectable in the peripheral blood in all three. The specific antibodies were undetectable in donors' and patients' blood before alloHSCT suggesting that the antibodies had arisen from the transplanted donor immune system. Early intensive immunotherapy led to improvement of clinical symptoms and stability of the neurological disease, however, at the cost of losing the graft-versus-malignancy effect in one patient. In conclusion, we provide evidence of isolated, severe allo-immune diseases of the peripheral and central nervous system as complications of alloHSCT ("neuro-GvHD"). Interdisciplinary surveillance and thorough diagnostic work-up are needed for early diagnosis and treatment of neuro-immunologic complications after alloHSCT to improve the otherwise poor outcome.


Host immune status-specific production of gliotoxin and bis-methyl-gliotoxin during invasive aspergillosis in mice.

  • Janyce A Sugui‎ et al.
  • Scientific reports‎
  • 2017‎

Delayed diagnosis in invasive aspergillosis (IA) contributes to its high mortality. Gliotoxin (GT) and bis-methyl-gliotoxin (bmGT) are secondary metabolites produced by Aspergillus during invasive, hyphal growth and may prove diagnostically useful. Because IA pathophysiology and GT's role in virulence vary depending on the underlying host immune status, we hypothesized that GT and bmGT production in vivo may differ in three mouse models of IA that mimic human disease. We defined temporal kinetics of GT and bmGT in serum, bronchoalveolar lavage fluid (BALF) and lungs of A. fumigatus-infected chronic granulomatous disease (CGD), hydrocortisone-treated, and neutropenic mice. We harvested lungs for assessment of fungal burden, histology and GT/bmGT biosynthetic genes' mRNA induction. GT levels were higher in neutropenic versus CGD or steroid-treated lungs. bmGT was persistently detected only in CGD lungs. GT, but not bmGT, was detected in 71% of sera and 50% of BALF of neutropenic mice; neither was detected in serum/BALF of CGD or steroid-treated mice. Enrichment of GT in Aspergillus-infected neutropenic lung correlated with fungal burden and hyphal length but not induction of GT biosynthetic genes. In summary, GT is detectable in mouse lungs, serum and BALF during neutropenic IA, suggesting that GT may be useful to diagnose IA in neutropenic patients.


Bat-mouse bone marrow chimera: a novel animal model for dissecting the uniqueness of the bat immune system.

  • Kylie Su Mei Yong‎ et al.
  • Scientific reports‎
  • 2018‎

Bats are an important animal model with long lifespans, low incidences of tumorigenesis and an ability to asymptomatically harbour pathogens. Currently, in vivo studies of bats are hampered due to their low reproduction rates. To overcome this, we transplanted bat cells from bone marrow (BM) and spleen into an immunodeficient mouse strain NOD-scid IL-2R-/- (NSG), and have successfully established stable, long-term reconstitution of bat immune cells in mice (bat-mice). Immune functionality of our bat-mouse model was demonstrated through generation of antigen-specific antibody response by bat cells following immunization. Post-engraftment of total bat BM cells and splenocytes, bat immune cells survived, expanded and repopulated the mouse without any observable clinical abnormalities. Utilizing bat's remarkable immunological functions, this novel model has a potential to be transformed into a powerful platform for basic and translational research.


Anticoagulants impact on innate immune responses and bacterial survival in whole blood models of Neisseria meningitidis infection.

  • Lea Strobel‎ et al.
  • Scientific reports‎
  • 2018‎

Neisseria meningitidis (meningococcus) causes invasive diseases such as meningitis or septicaemia. Ex vivo infection of human whole blood is a valuable tool to study meningococcal virulence factors and the host innate immune responses. In order to consider effects of cellular mediators, the coagulation cascade must be inhibited to avoid clotting. There is considerable variation in the anticoagulants used among studies of N. meningitidis whole blood infections, featuring citrate, heparin or derivatives of hirudin, a polypeptide from leech saliva. Here, we compare the influence of these three different anticoagulants, and additionally Mg/EGTA, on host innate immune responses as well as on viability of N. meningitidis strains isolated from healthy carriers and disease cases, reflecting different sequence types and capsule phenotypes. We found that the anticoagulants significantly impact on cellular responses and, strain-dependently, also on bacterial survival. Hirudin does not inhibit complement and is therefore superior over the other anticoagulants; indeed hirudin-plasma most closely reflects the characteristics of serum during N. meningitidis infection. We further demonstrate the impact of heparin on complement activation on N. meningitidis and its consequences on meningococcal survival in immune sera, which appears to be independent of the heparin binding antigens Opc and NHBA.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: