Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,888 papers

Epidemiology of idiopathic pulmonary fibrosis.

  • Brett Ley‎ et al.
  • Clinical epidemiology‎
  • 2013‎

Idiopathic pulmonary fibrosis is a chronic fibrotic lung disease of unknown cause that occurs in adults and has a poor prognosis. Its epidemiology has been difficult to study because of its rarity and evolution in diagnostic and coding practices. Though uncommon, it is likely underappreciated both in terms of its occurrence (ie, incidence, prevalence) and public health impact (ie, health care costs and resource utilization). Incidence and mortality appear to be on the rise, and prevalence is expected to increase with the aging population. Potential risk factors include occupational and environmental exposures, tobacco smoking, gastroesophageal reflux, and genetic factors. An accurate understanding of its epidemiology is important, especially as novel therapies are emerging.


Autophagy in idiopathic pulmonary fibrosis.

  • Avignat S Patel‎ et al.
  • PloS one‎
  • 2012‎

Autophagy is a basic cellular homeostatic process important to cell fate decisions under conditions of stress. Dysregulation of autophagy impacts numerous human diseases including cancer and chronic obstructive lung disease. This study investigates the role of autophagy in idiopathic pulmonary fibrosis.


Treatment of idiopathic pulmonary fibrosis.

  • Craig E Daniels‎ et al.
  • Seminars in respiratory and critical care medicine‎
  • 2006‎

Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive lung disease in most cases, and effective treatment is still lacking. This review examines the current status of treatment options and complexities in the management of patients with IPF. Although optimal therapy for IPF has not been identified, ongoing research efforts warrant reason for optimism. Current management of IPF includes not only judicious use of available pharmacological agents tailored to individual circumstances but also patient education through realistic assessment of prognosis, discussion of pros and cons of pharmacotherapy, early consideration of lung transplantation when applicable, treatment of complications, supportive care, and encouragement to participate in clinical trials.


Patient Registries in Idiopathic Pulmonary Fibrosis.

  • Daniel A Culver‎ et al.
  • American journal of respiratory and critical care medicine‎
  • 2019‎

Over the past decade, several large registries of patients with idiopathic pulmonary fibrosis (IPF) have been established. These registries are collecting a wealth of longitudinal data on thousands of patients with this rare disease. The data collected in these registries will be complementary to data collected in clinical trials because the patient populations studied in registries have a broader spectrum of disease severity and comorbidities and can be followed for a longer period of time. Maintaining the quality and completeness of registry databases presents administrative and resourcing challenges, but it is important to ensuring the robustness of the analyses. Data from patient registries have already helped improve understanding of the clinical characteristics of patients with IPF, the impact that the disease has on their quality of life and survival, and current practices in diagnosis and management. In the future, analyses of biospecimens linked to detailed patient profiles will provide the opportunity to identify biomarkers linked to disease progression, facilitating the development of precision medicine approaches for prognosis and therapy in patients with IPF.


Organoid Model in Idiopathic Pulmonary Fibrosis.

  • Jooyeon Lee‎ et al.
  • International journal of stem cells‎
  • 2021‎

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive- fibrosing disease characterized by extensive deposition of extracellular matrix (ECM), scarring of the lung parenchyma. Despite increased awareness of IPF, etiology and physiological mechanism of IPF are unclear. Therefore, preclinical model will require relevant and recapitulative features of IPF. Recently, pluripotent stem cells (PSC)-based organoid studies are emerging as an alternative approach able to recapitulate tissue architecture with remarkable fidelity. Moreover, these biomimetic tissue models can be served to investigate the mechanisms of diverse disease progression. In this review, we will overview the current organoids technology for human disease modeling including lung organoids for IPF.


Prognosis of combined pulmonary fibrosis and emphysema: comparison with idiopathic pulmonary fibrosis alone.

  • Chun-Guo Jiang‎ et al.
  • Therapeutic advances in respiratory disease‎
  • 2019‎

Combined pulmonary fibrosis and emphysema (CPFE) is a syndrome characterized by the coexistence of upper lobe emphysema and lower lobe fibrosis. However, whether CPFE has a higher or lower mortality than idiopathic pulmonary fibrosis (IPF) alone is still not clear. In this study we conducted a meta-analysis to assess the survival rate (SR) of CPFE versus IPF alone in clinical trials.


Increased Primary Cilia in Idiopathic Pulmonary Fibrosis.

  • Junguee Lee‎ et al.
  • Molecules and cells‎
  • 2018‎

Primary cilia are solitary, non-motile, axonemal microtubule-based antenna-like organelles that project from the plasma membrane of most mammalian cells and are implicated in transducing hedgehog signals during development. It was recently proposed that aberrant SHH signaling may be implicated in the progression of idiopathic pulmonary fibrosis (IPF). However, the distribution and role of primary cilia in IPF remains unclear. Here, we clearly observed the primary cilia in alveolar epithelial cells, fibroblasts, and endothelial cells of human normal lung tissue. Then, we investigated the distribution of primary cilia in human IPF tissue samples using immunofluorescence. Tissues from six IPF cases showed an increase in the number of primary cilia in alveolar cells and fibroblasts. In addition, we observed an increase in ciliogenesis related genes such as IFT20 and IFT88 in IPF. Since major components of the SHH signaling pathway are known to be localized in primary cilia, we quantified the mRNA expression of the SHH signaling components using qRT-PCR in both IPF and control lung. mRNA levels of SHH, the coreceptor SMO, and the transcription factors GLI1 and GLI2 were upregulated in IPF compared with control. Furthermore, the nuclear localization of GLI1 was observed mainly in alveolar epithelia and fibroblasts. In addition, we showed that defective KIF3A-mediated ciliary loss in human type II alveolar epithelial cell lines leads to disruption of SHH signaling. These results indicate that a significant increase in the number of primary cilia in IPF contributes to the upregulation of SHH signals.


Idiopathic pulmonary fibrosis: Current and future treatment.

  • Daniel S Glass‎ et al.
  • The clinical respiratory journal‎
  • 2022‎

Idiopathic pulmonary fibrosis (IPF) is a chronic fibrotic lung disease characterized by dry cough, fatigue, and progressive exertional dyspnea. Lung parenchyma and architecture is destroyed, compliance is lost, and gas exchange is compromised in this debilitating condition that leads inexorably to respiratory failure and death within 3-5 years of diagnosis. This review discusses treatment approaches to IPF in current use and those that appear promising for future development.


PCSK6 and Survival in Idiopathic Pulmonary Fibrosis.

  • Justin M Oldham‎ et al.
  • American journal of respiratory and critical care medicine‎
  • 2023‎

Rationale: Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by limited treatment options and high mortality. A better understanding of the molecular drivers of IPF progression is needed. Objectives: To identify and validate molecular determinants of IPF survival. Methods: A staged genome-wide association study was performed using paired genomic and survival data. Stage I cases were drawn from centers across the United States and Europe and stage II cases from Vanderbilt University. Cox proportional hazards regression was used to identify gene variants associated with differential transplantation-free survival (TFS). Stage I variants with nominal significance (P < 5 × 10-5) were advanced for stage II testing and meta-analyzed to identify those reaching genome-wide significance (P < 5 × 10-8). Downstream analyses were performed for genes and proteins associated with variants reaching genome-wide significance. Measurements and Main Results: After quality controls, 1,481 stage I cases and 397 stage II cases were included in the analysis. After filtering, 9,075,629 variants were tested in stage I, with 158 meeting advancement criteria. Four variants associated with TFS with consistent effect direction were identified in stage II, including one in an intron of PCSK6 (proprotein convertase subtilisin/kexin type 6) reaching genome-wide significance (hazard ratio, 4.11 [95% confidence interval, 2.54-6.67]; P = 9.45 × 10-9). PCSK6 protein was highly expressed in IPF lung parenchyma. PCSK6 lung staining intensity, peripheral blood gene expression, and plasma concentration were associated with reduced TFS. Conclusions: We identified four novel variants associated with IPF survival, including one in PCSK6 that reached genome-wide significance. Downstream analyses suggested that PCSK6 protein plays a potentially important role in IPF progression.


Global methylation patterns in idiopathic pulmonary fibrosis.

  • Einat I Rabinovich‎ et al.
  • PloS one‎
  • 2012‎

Idiopathic Pulmonary Fibrosis (IPF) is characterized by profound changes in the lung phenotype including excessive extracellular matrix deposition, myofibroblast foci, alveolar epithelial cell hyperplasia and extensive remodeling. The role of epigenetic changes in determining the lung phenotype in IPF is unknown. In this study we determine whether IPF lungs exhibit an altered global methylation profile.


Increased FGF1-FGFRc expression in idiopathic pulmonary fibrosis.

  • BreAnne MacKenzie‎ et al.
  • Respiratory research‎
  • 2015‎

Recent clinical studies show that tyrosine kinase inhibitors slow the rate of lung function decline and decrease the number of acute exacerbations in patients with Idiopathic Pulmonary Fibrosis (IPF). However, in the murine bleomycin model of fibrosis, not all tyrosine kinase signaling is detrimental. Exogenous ligands Fibroblast Growth Factor (FGF) 7 and 10 improve murine lung repair and increase survival after injury via tyrosine kinase FGF receptor 2b-signaling. Therefore, the level and location of FGF/FGFR expression as well as the exogenous effect of the most highly expressed FGFR2b ligand, FGF1, was analyzed on human lung fibroblasts.


MiR-608 overexpression in idiopathic pulmonary fibrosis (IPF).

  • Gali Epstein Shochet‎ et al.
  • BMC pulmonary medicine‎
  • 2021‎

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease that causes scarring of the lungs. The disease is associated with the usual interstitial pneumonia pattern, which was not yet fully recapitulated by an animal model. Therefore, the disease is considered 'human specific'. miRNA-608 is a primate specific miRNA with many potential targets, such CdC42 and Interlukin-6 (IL-6) that were previously implicated in IPF pathology.


Oxidant/Antioxidant Disequilibrium in Idiopathic Pulmonary Fibrosis Pathogenesis.

  • Paolo Cameli‎ et al.
  • Inflammation‎
  • 2020‎

Idiopathic pulmonary fibrosis is characterised by abnormal reepithelialisation and remodelling consequent to persistent stimuli or injury. The involvement of oxidative stress in alveolar injury, inflammation and fibrosis development has been suggested. Increased concentrations of lipid peroxidation products, oxidised proteins and an altered antioxidant enzyme status with the depletion of glutathione, the most abundant low-molecular-weight antioxidant, have often been reported in epithelial lining fluid of IPF patients. This review describes the sources of free radical generation, ROS-induced signalling pathways and mechanisms of oxidative stress damages in the pathogenesis of idiopathic pulmonary fibrosis.


Cartilage oligomeric matrix protein in idiopathic pulmonary fibrosis.

  • Louis J Vuga‎ et al.
  • PloS one‎
  • 2013‎

Idiopathic pulmonary fibrosis (IPF) is a progressive and life threatening disease with median survival of 2.5-3 years. The IPF lung is characterized by abnormal lung remodeling, epithelial cell hyperplasia, myofibroblast foci formation, and extracellular matrix deposition. Analysis of gene expression microarray data revealed that cartilage oligomeric matrix protein (COMP), a non-collagenous extracellular matrix protein is among the most significantly up-regulated genes (Fold change 13, p-value <0.05) in IPF lungs. This finding was confirmed at the mRNA level by nCounter® expression analysis in additional 115 IPF lungs and 154 control lungs as well as at the protein level by western blot analysis. Immunohistochemical analysis revealed that COMP was expressed in dense fibrotic regions of IPF lungs and co-localized with vimentin and around pSMAD3 expressing cells. Stimulation of normal human lung fibroblasts with TGF-β1 induced an increase in COMP mRNA and protein expression. Silencing COMP in normal human lung fibroblasts significantly inhibited cell proliferation and negatively impacted the effects of TGF-β1 on COL1A1 and PAI1. COMP protein concentration measured by ELISA assay was significantly increased in serum of IPF patients compared to controls. Analysis of serum COMP concentrations in 23 patients who had prospective blood draws revealed that COMP levels increased in a time dependent fashion and correlated with declines in force vital capacity (FVC). Taken together, our results should encourage more research into the potential use of COMP as a biomarker for disease activity and TGF-β1 activity in patients with IPF. Hence, studies that explore modalities that affect COMP expression, alleviate extracellular matrix rigidity and lung restriction in IPF and interfere with the amplification of TGF-β1 signaling should be persuaded.


Epidemiology of Idiopathic Pulmonary Fibrosis in Northern Italy.

  • Sergio Harari‎ et al.
  • PloS one‎
  • 2016‎

Idiopathic pulmonary fibrosis (IPF) is the most common and severe form of idiopathic interstitial pneumonia. Despite its clinical relevance, few studies have examined the epidemiology of IPF and temporal variation in disease incidence and prevalence. Aim of the study was to investigate the prevalence, incidence and trends of IPF in Lombardy, a region with nearly 10 million inhabitants, during 2005-2010.


Global incidence and prevalence of idiopathic pulmonary fibrosis.

  • Toby M Maher‎ et al.
  • Respiratory research‎
  • 2021‎

Idiopathic pulmonary fibrosis (IPF) is a progressive debilitating lung disease with considerable morbidity. Heterogeneity in epidemiologic studies means the full impact of the disease is unclear.


Idiopathic pulmonary fibrosis: aberrant recapitulation of developmental programs?

  • Moisés Selman‎ et al.
  • PLoS medicine‎
  • 2008‎

The authors discuss evidence suggesting that embryonic signaling pathways involved in epithelium/mesenchymal communication and epithelial cell plasticity may be aberrantly switched on in idiopathic pulmonary fibrosis.


A mouse model of chronic idiopathic pulmonary fibrosis.

  • Nathachit Limjunyawong‎ et al.
  • Physiological reports‎
  • 2014‎

Chronic idiopathic pulmonary fibrosis (IPF) is a progressive, fatal, and untreatable disease with unclear etiology. There are few models of this chronic pathology, and although delivery of bleomycin to induce acute lung injury is the most common animal model of pulmonary fibrosis, there is considerable uncertainty about whether this acute injury resolves in those animals that survive. In this report, we have systematically followed groups of mice for up to 6 months following a single insult of bleomycin. We assessed changes in lung function and pathology over this time course, with measurements of the diffusion capacity for carbon monoxide, lung mechanics, quantitative stereology, and collagen. Our results show that, while there is some repair over this extended time course, the injury in the lung never fully resolves. This persistent degree of fibrosis may have similarities to many features of human IPF. Thus, these chronic fibrotic changes in mouse lungs could be a useful model to evaluate potential therapeutic interventions to accelerate repair and possible treat this debilitating disease.


Predictive biomarkers of disease progression in idiopathic pulmonary fibrosis.

  • Weiwei Zhu‎ et al.
  • Heliyon‎
  • 2024‎

Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial disease that cannot be cured, and treatment options for IPF are very limited. Early diagnosis, close monitoring of disease progression, and timely treatment are therefore the best options for patients due to the irreversibility of IPF. Effective markers help doctors judge the development and prognosis of disease. Recent research on traditional biomarkers (KL-6, SP-D, MMP-7, TIMPs, CCL18) has provided novel ideas for predicting disease progression and prognosis. Some emerging biomarkers (HE4, GDF15, PRDX4, inflammatory cells, G-CSF) also provide more possibilities for disease prediction. In addition to markers in serum and bronchoalveolar lavage fluid (BALF), some improvements related to the GAP model and chest HRCT also show good predictive ability for disease prognosis.


Increased AGE-RAGE ratio in idiopathic pulmonary fibrosis.

  • Carlos Machahua‎ et al.
  • Respiratory research‎
  • 2016‎

The abnormal epithelial-mesenchymal restorative capacity in idiopathic pulmonary fibrosis (IPF) has been recently associated with an accelerated aging process as a key point for the altered wound healing. The advanced glycation end-products (AGEs) are the consequence of non-enzymatic reactions between lipid and protein with several oxidants in the aging process. The receptor for AGEs (RAGEs) has been implicated in the lung fibrotic process and the alveolar homeostasis. However, this AGE-RAGE aging pathway has been under-explored in IPF.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: