Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Sildenafil improves hippocampal brain injuries and restores neuronal development after neonatal hypoxia-ischemia in male rat pups.

  • Armin Yazdani‎ et al.
  • Scientific reports‎
  • 2021‎

The hippocampus is a fundamental structure of the brain that plays an important role in neurodevelopment and is very sensitive to hypoxia-ischemia (HI). The purpose of this study was to investigate the effects of sildenafil on neonatal hippocampal brain injuries resulting from HI, and on neuronal development in this context. HI was induced in male Long-Evans rat pups at postnatal day 10 (P10) by a left common carotid ligation followed by a 2-h exposure to 8% oxygen. Rat pups were randomized to vehicle or sildenafil given orally twice daily for 7 days starting 12 h after HI. Hematoxylin and eosin staining was performed at P30 to measure the surface of the hippocampus; immunohistochemistry was performed to stain neurons, oligodendrocytes, and glial cells in the hippocampus. Western blots of the hippocampus were performed at P12, P17, and P30 to study the expression of neuronal markers and mTOR pathway. HI caused significant hippocampal atrophy and a significant reduction of the number of mature neurons, and induced reactive astrocytosis and microgliosis in the hippocampus. HI increased apoptosis and caused significant dysregulation of the normal neuronal development program. Treatment with sildenafil preserved the gross morphology of the hippocampus, reverted the number of mature neurons to levels comparable to sham rats, significantly increased both the immature and mature oligodendrocytes, and significantly reduced the number of microglia and astrocytes. Sildenafil also decreased apoptosis and reestablished the normal progression of post-natal neuronal development. The PI3K/Akt/mTOR pathway, whose activity was decreased after HI in the hippocampus, and restored after sildenafil treatment, may be involved. Sildenafil may have both neuroprotective and neurorestorative properties in the neonatal hippocampus following HI.


Comparing the efficacy in reducing brain injury of different neuroprotective agents following neonatal hypoxia-ischemia in newborn rats: a multi-drug randomized controlled screening trial.

  • Hemmen Sabir‎ et al.
  • Scientific reports‎
  • 2023‎

Intrapartum hypoxia-ischemia leading to neonatal encephalopathy (NE) results in significant neonatal mortality and morbidity worldwide, with > 85% of cases occurring in low- and middle-income countries (LMIC). Therapeutic hypothermia (HT) is currently the only available safe and effective treatment of HIE in high-income countries (HIC); however, it has shown limited safety or efficacy in LMIC. Therefore, other therapies are urgently required. We aimed to compare the treatment effects of putative neuroprotective drug candidates following neonatal hypoxic-ischemic (HI) brain injury in an established P7 rat Vannucci model. We conducted the first multi-drug randomized controlled preclinical screening trial, investigating 25 potential therapeutic agents using a standardized experimental setting in which P7 rat pups were exposed to unilateral HI brain injury. The brains were analysed for unilateral hemispheric brain area loss after 7 days survival. Twenty animal experiments were performed. Eight of the 25 therapeutic agents significantly reduced brain area loss with the strongest treatment effect for Caffeine, Sonic Hedgehog Agonist (SAG) and Allopurinol, followed by Melatonin, Clemastine, ß-Hydroxybutyrate, Omegaven, and Iodide. The probability of efficacy was superior to that of HT for Caffeine, SAG, Allopurinol, Melatonin, Clemastine, ß-hydroxybutyrate, and Omegaven. We provide the results of the first systematic preclinical screening of potential neuroprotective treatments and present alternative single therapies that may be promising treatment options for HT in LMIC.


Deficits in motor and cognitive functions in an adult mouse model of hypoxia-ischemia induced stroke.

  • Li Feng‎ et al.
  • Scientific reports‎
  • 2020‎

Ischemic strokes cause devastating brain damage and functional deficits with few treatments available. Previous studies have shown that the ischemia-hypoxia rapidly induces clinically similar thrombosis and neuronal loss, but any resulting behavioral changes are largely unknown. The goal of this study was to evaluate motor and cognitive deficits in adult HI mice. Following a previously established procedure, HI mouse models were induced by first ligating the right common carotid artery and followed by hypoxia. Histological data showed significant long-term neuronal losses and reactive glial cells in the ipsilateral striatum and hippocampus of the HI mice. Whereas the open field test and the rotarod test could not reliably distinguish between the sham and HI mice, in the tapered beam and wire-hanging tests, the HI mice showed short-term and long-term deficits, as evidenced by the increased number of foot faults and decreased hanging time respectively. In cognitive tests, the HI mice swam longer distances and needed more time to find the platform in the Morris water maze test and showed shorter freezing time in fear contextual tests after fear training. In conclusion, this study demonstrates that adult HI mice have motor and cognitive deficits and could be useful models for preclinical stroke research.


Unveiling OASIS family as a key player in hypoxia-ischemia cases induced by cocaine using generative adversarial networks.

  • Kyoungmin Lee‎ et al.
  • Scientific reports‎
  • 2022‎

Repeated cocaine use poses many serious health risks to users. One of the risks is hypoxia and ischemia (HI). To restore the biological system against HI, complex biological mechanisms operate at the gene level. Despite the complexity of biological mechanisms, there are common denominator genes that play pivotal roles in various defense systems. Among these genes, the cAMP response element-binding (Creb) protein contributes not only to various aspects of drug-seeking behavior and drug reward, but also to protective mechanisms. However, it is still unclear which Creb members are key players in the protection of cocaine-induced HI conditions. Herein, using one of the state-of-the-art deep learning methods, the generative adversarial network, we revealed that the OASIS family, one of the Creb family, is a key player in various defense mechanisms such as angiogenesis and unfolded protein response against the HI state by unveiling hidden mRNA expression profiles. Furthermore, we identified mysterious kinases in the OASIS family and are able to explain why the prefrontal cortex and hippocampus are vulnerable to HI at the genetic level.


Metabolic adaptations to hypoxia in the neonatal mouse forebrain can occur independently of the transporters SLC7A5 and SLC3A2.

  • Eamon Fitzgerald‎ et al.
  • Scientific reports‎
  • 2021‎

Neonatal encephalopathy due to hypoxia-ischemia is associated with adverse neurodevelopmental effects. The involvement of branched chain amino acids (BCAAs) in this is largely unexplored. Transport of BCAAs at the plasma membrane is facilitated by SLC7A5/SLC3A2, which increase with hypoxia. We hypothesized that hypoxia would alter BCAA transport and metabolism in the neonatal brain. We investigated this using an organotypic forebrain slice culture model with, the SLC7A5/SLC3A2 inhibitor, 2-Amino-2-norbornanecarboxylic acid (BCH) under normoxic or hypoxic conditions. We subsequently analysed the metabolome and candidate gene expression. Hypoxia was associated with increased expression of SLC7A5 and SLC3A2 and an increased tissue abundance of BCAAs. Incubation of slices with 13C-leucine confirmed that this was due to increased cellular uptake. BCH had little effect on metabolite abundance under normoxic or hypoxic conditions. This suggests hypoxia drives increased cellular uptake of BCAAs in the neonatal mouse forebrain, and membrane mediated transport through SLC7A5 and SLC3A2 is not essential for this process. This indicates mechanisms exist to generate the compounds required to maintain essential metabolism in the absence of external nutrient supply. Moreover, excess BCAAs have been associated with developmental delay, providing an unexplored mechanism of hypoxia mediated pathogenesis in the developing forebrain.


Protective effects of delayed intraventricular TLR7 agonist administration on cerebral white and gray matter following asphyxia in the preterm fetal sheep.

  • Kenta H T Cho‎ et al.
  • Scientific reports‎
  • 2019‎

Preterm brain injury is highly associated with inflammation, which is likely related in part to sterile responses to hypoxia-ischemia. We have recently shown that neuroprotection with inflammatory pre-conditioning in the immature brain is associated with induction of toll-like receptor 7 (TLR7). We therefore tested the hypothesis that central administration of a synthetic TLR7 agonist, gardiquimod (GDQ), after severe hypoxia-ischemia in preterm-equivalent fetal sheep would improve white and gray matter recovery. Fetal sheep at 0.7 of gestation received sham asphyxia or asphyxia induced by umbilical cord occlusion for 25 minutes, followed by a continuous intracerebroventricular infusion of GDQ or vehicle from 1 to 4 hours (total dose 1.8 mg/kg). Sheep were killed 72 hours after asphyxia for histology. GDQ significantly improved survival of immature and mature oligodendrocytes (2',3'-cyclic-nucleotide 3'-phosphodiesterase, CNPase) and total oligodendrocytes (oligodendrocyte transcription factor 2, Olig-2) within the periventricular and intragyral white matter. There were reduced numbers of cells showing cleaved caspase-3 positive apoptosis and astrogliosis (glial fibrillary acidic protein, GFAP) in both white matter regions. Neuronal survival was increased in the dentate gyrus, caudate and medial thalamic nucleus. Central infusion of GDQ was associated with a robust increase in fetal plasma concentrations of the anti-inflammatory cytokines, interferon-β (IFN-β) and interleukin-10 (IL-10), with no significant change in the concentration of the pro-inflammatory cytokine, tumor necrosis factor-α (TNF-α). In conclusion, delayed administration of the TLR7 agonist, GDQ, after severe hypoxia-ischemia in the developing brain markedly ameliorated white and gray matter damage, in association with upregulation of anti-inflammatory cytokines. These data strongly support the hypothesis that modulation of secondary inflammation may be a viable therapeutic target for injury of the preterm brain.


High-Dose Melatonin and Ethanol Excipient Combined with Therapeutic Hypothermia in a Newborn Piglet Asphyxia Model.

  • Nicola J Robertson‎ et al.
  • Scientific reports‎
  • 2020‎

With the current practice of therapeutic hypothermia for neonatal encephalopathy, disability rates and the severity spectrum of cerebral palsy are reduced. Nevertheless, safe and effective adjunct therapies are needed to optimize outcomes. This study's objective was to assess if 18 mg/kg melatonin given rapidly over 2 h at 1 h after hypoxia-ischemia with cooling from 1-13 h was safe, achieved therapeutic levels within 3 h and augmented hypothermic neuroprotection. Following hypoxia-ischemia, 20 newborn piglets were randomized to: (i) Cooling 1-13 h (HT; n = 6); (ii) HT+ 2.5% ethanol vehicle (HT+V; n = 7); (iii) HT + Melatonin (HT+M; n = 7). Intensive care was maintained for 48 h; aEEG was acquired throughout, brain MRS acquired at 24 and 48 h and cell death (TUNEL) evaluated at 48 h. There were no differences for insult severity. Core temperature was higher in HT group for first hour after HI. Comparing HT+M to HT, aEEG scores recovered more quickly by 19 h (p < 0.05); comparing HT+V to HT, aEEG recovered from 31 h (p < 0.05). Brain phosphocreatine/inorganic phosphate and NTP/exchangeable phosphate were higher at 48 h in HT+M versus HT (p = 0.036, p = 0.049 respectively). Including both 24 h and 48 h measurements, the rise in Lactate/N-acetyl aspartate was reduced in white (p = 0.030) and grey matter (p = 0.038) after HI. Reduced overall TUNEL positive cells were observed in HT+M (47.1 cells/mm2) compared to HT (123.8 cells/mm2) (p = 0.0003) and HT+V (97.5 cells/mm2) compared to HT (p = 0.012). Localized protection was seen in white matter for HT+M versus HT (p = 0.036) and internal capsule for HT+M compared to HT (p = 0.001) and HT+V versus HT (p = 0.006). Therapeutic melatonin levels (15-30mg/l) were achieved at 2 h and were neuroprotective following HI, but ethanol vehicle was partially protective.


Structural and biochemical insights of CypA and AIF interaction.

  • Biancamaria Farina‎ et al.
  • Scientific reports‎
  • 2017‎

The Cyclophilin A (CypA)/Apoptosis Inducing Factor (AIF) complex is implicated in the DNA degradation in response to various cellular stress conditions, such as oxidative stress, cerebral hypoxia-ischemia and traumatic brain injury. The pro-apoptotic form of AIF (AIF(Δ1-121)) mainly interacts with CypA through the amino acid region 370-394. The AIF(370-394) synthetic peptide inhibits complex formation in vitro by binding to CypA and exerts neuroprotection in a model of glutamate-mediated oxidative stress. Here, the binding site of AIF(Δ1-121) and AIF(370-394) on CypA has been mapped by NMR spectroscopy and biochemical studies, and a molecular model of the complex has been proposed. We show that AIF(370-394) interacts with CypA on the same surface recognized by AIF(Δ1-121) protein and that the region is very close to the CypA catalytic pocket. Such region partially overlaps with the binding site of cyclosporin A (CsA), the strongest catalytic inhibitor of CypA. Our data point toward distinct CypA structural determinants governing the inhibitor selectivity and the differential biological effects of AIF and CsA, and provide new structural insights for designing CypA/AIF selective inhibitors with therapeutic relevance in neurodegenerative diseases.


Effects of delayed intraventricular TLR7 agonist administration on long-term neurological outcome following asphyxia in the preterm fetal sheep.

  • Kenta H T Cho‎ et al.
  • Scientific reports‎
  • 2020‎

In the preterm brain, accumulating evidence suggests toll-like receptors (TLRs) are key mediators of the downstream inflammatory pathways triggered by hypoxia-ischemia (HI), which have the potential to exacerbate or ameliorate injury. Recently we demonstrated that central acute administration of the TLR7 agonist Gardiquimod (GDQ) confers neuroprotection in the preterm fetal sheep at 3 days post-asphyxial recovery. However, it is unknown whether GDQ can afford long-term protection. To address this, we examined the long-term effects of GDQ. Briefly, fetal sheep (0.7 gestation) received sham asphyxia or asphyxia induced by umbilical cord occlusion, and were studied for 7 days recovery. Intracerebroventricular (ICV) infusion of GDQ (total dose 3.34 mg) or vehicle was performed from 1-4 hours after asphyxia. GDQ was associated with a robust increase in concentration of tumor necrosis factor-(TNF)-α in the fetal plasma, and interleukin-(IL)-10 in both the fetal plasma and cerebrospinal fluid. GDQ did not significantly change the number of total and immature/mature oligodendrocytes within the periventricular and intragyral white matter. No changes were observed in astroglial and microglial numbers and proliferating cells in both white matter regions. GDQ increased neuronal survival in the CA4 region of the hippocampus, but was associated with exacerbated neuronal injury within the caudate nucleus. In conclusion, our data suggest delayed acute ICV administration of GDQ after severe HI in the developing brain may not support long-term neuroprotection.


Developmental Sex Differences in the Metabolism of Cardiolipin in Mouse Cerebral Cortex Mitochondria.

  • Estefanía Acaz-Fonseca‎ et al.
  • Scientific reports‎
  • 2017‎

Cardiolipin (CL) is a mitochondrial-specific phospholipid. CL content and acyl chain composition are crucial for energy production. Given that estradiol induces CL synthesis in neurons, we aimed to assess CL metabolism in the cerebral cortex (CC) of male and female mice during early postnatal life, when sex steroids induce sex-dimorphic maturation of the brain. Despite the fact that total amount of CL was similar, its fatty acid composition differed between males and females at birth. In males, CL was more mature (lower saturation ratio) and the expression of the enzymes involved in synthetic and remodeling pathways was higher, compared to females. Importantly, the sex differences found in CL metabolism were due to the testosterone peak that male mice experience perinatally. These changes were associated with a higher expression of UCP-2 and its activators in the CC of males. Overall, our results suggest that the perinatal testosterone surge in male mice regulates CL biosynthesis and remodeling in the CC, inducing a sex-dimorphic fatty acid composition. In male's CC, CL is more susceptible to peroxidation, likely explaining the testosterone-dependent induction of neuroprotective molecules such as UCP-2. These differences may account for the sex-dependent mitochondrial susceptibility after perinatal hypoxia/ischemia.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: