2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

Hypoxia post-conditioning promoted glycolysis in mice cerebral ischemic model.

  • Changhong Ren‎ et al.
  • Brain research‎
  • 2020‎

Ischemic stroke initiated by transient or permanent cerebral blood flow decline remains the leading cause of permanent disability in industrialized nations. Therapeutic strategies to improve patient recovery are remain limited. Hypoxia post-conditioning (HPostC) has been known to be neuroprotective against ischemic injuries in vivo and in vitro. Understanding its mechanism of action may promote its clinical translation. In this study, we devised a method of HPostC treatment to provide protection from a focal cerebral ischemic induced injury and to explore the underling mechanism. We found that our HPostC method improved energy supply by elevating the level of glucose, pyruvate and ATP/ADP ratio within the cerebral hemisphere in mice. In the distal middle cerebral artery occlusion (dMCAO) mice, this HPostC treatment reduced infarct size, and was associated with increased levels of pyruvate, pyruvate/lactate ratio and ATP/ADP ratio. Western blot analysis indicated that the HPostC treatment up-regulated AMPK signaling activities in the cerebral hemisphere. Our results suggest that this HPostC treatment exerts its neuroprotective effect by promoting glycolysis to elevate the ATP/ADP level, and the AMPK/PFKFB3 signaling pathway. These findings may provide biomarkers for clinical use of HPostC methods.


Acute high-altitude hypoxia exposure causes neurological deficits via formaldehyde accumulation.

  • Xiaoyin Wang‎ et al.
  • CNS neuroscience & therapeutics‎
  • 2022‎

Acute high-altitude hypoxia exposure causes multiple adverse neurological consequences. However, the exact mechanisms are still unclear, and there is no targeted treatment with few side effects. Excessive cerebral formaldehyde (FA) impairs numerous functions, and can be eliminated by nano-packed coenzyme Q10 (CoQ10).


Limb remote ischemic per-conditioning in combination with post-conditioning reduces brain damage and promotes neuroglobin expression in the rat brain after ischemic stroke.

  • Changhong Ren‎ et al.
  • Restorative neurology and neuroscience‎
  • 2015‎

Limb remote ischemic per-conditioning or post-conditioning has been shown to be neuroprotective after cerebral ischemic stroke. However, the effect of combining remote per-conditioning with post-conditioning on ischemic/reperfusion injury as well as the underlying mechanisms are largely unexplored.


Exosomal MicroRNA-126 from RIPC Serum Is Involved in Hypoxia Tolerance in SH-SY5Y Cells by Downregulating DNMT3B.

  • Junhe Cui‎ et al.
  • Molecular therapy. Nucleic acids‎
  • 2020‎

Ischemic tolerance in the brain can be induced by transient limb ischemia, and this phenomenon is termed remote ischemic preconditioning (RIPC). It still remains elusive how this transfer of tolerance occurs. Exosomes can cross the blood-brain barrier, and some molecules may transfer neuroprotective signals from the periphery to the brain. Serum miRNA-126 is associated with ischemic stroke, and exosomal miRNA-126 has shown protective effects against acute myocardial infarction. Therefore, this study aims to explore whether exosomal miRNA-126 from RIPC serum can play a similar neuroprotective role. Exosomes were isolated from the venous serum of four healthy young male subjects, both before and after RIPC. Exosomal miRNA-126 was measured by real-time PCR. The miRNA-126 target sequence was predicted by bioinformatics software. SH-SY5Y neuronal cells were incubated with exosomes, and the cell cycle was analyzed by flow cytometry. The expression and activity of DNA methyltransferase (DNMT) 3B, a potential target gene of miRNA-126, were examined in SH-SY5Y cells. The cell viability of SH-SY5Y cells exposed to oxygen-glucose deprivation (OGD) was also investigated. To confirm the association between miRNA-126 and DNMT3B, we overexpressed miRNA-126 in SH-SY5Y cells using lentiviral transfection. miRNA-126 expression was upregulated in RIPC exosomes, and bioinformatics prediction showed that miRNA-126 could bind with DNMT3B. DNMT levels and DNMT3B activity were downregulated in SH-SY5Y cells incubated with RIPC exosomes. After overexpression of miRNA-126 in SH-SY5Y cells, global methylation levels and DNMT3B gene expression were downregulated in these cells, consistent with the bioinformatics predictions. RIPC exosomes can affect the cell cycle and increase OGD tolerance in SH-SY5Y cells. RIPC seems to have neuroprotective effects by downregulating the expression of DNMTs in neural cells through the upregulation of serum exosomal miRNA-126.


Abdominal Aortic Occlusion and the Inflammatory Effects in Heart and Brain.

  • Jun Xu‎ et al.
  • Mediators of inflammation‎
  • 2023‎

Abdominal aortic occlusion (AAO) occurs frequently and causes ischemia/reperfusion (I/R) injury to distant organs. In this study, we aimed to investigate whether AAO induced I/R injury and subsequent damage in cardiac and neurologic tissue. We also aimed to investigate the how length of ischemic time in AAO influences reactive oxygen species (ROS) production and inflammatory marker levels in the heart, brain, and serum.


Combination of Atractylenolide I, Atractylenolide III, and Paeoniflorin promotes angiogenesis and improves neurological recovery in a mouse model of ischemic Stroke.

  • Haiyan Li‎ et al.
  • Chinese medicine‎
  • 2024‎

Prognosis is critically important in stroke cases, with angiogenesis playing a key role in determining outcomes. This study aimed to investigate the potential protective effects of Atractylenolide I (Atr I), Atractylenolide III (Atr III), and Paeoniflorin (Pae) in promoting angiogenesis following cerebral ischemia.


Enhanced oxidative stress response and neuroprotection of combined limb remote ischemic conditioning and atorvastatin after transient ischemic stroke in rats.

  • Changhong Ren‎ et al.
  • Brain circulation‎
  • 2017‎

Limb remote ischemic conditioning (LRIC) and atorvastatin (AtS) both provide neuroprotection in stroke. We evaluated the enhanced neuroprotective effect of combining these two treatments in preventing ischemia/reperfusion (I/R)-induced cerebral injury in a rat model and investigated the corresponding molecular mechanisms.


Limb Remote Ischemic Conditioning Promotes Neurogenesis after Cerebral Ischemia by Modulating miR-449b/Notch1 Pathway in Mice.

  • Sijie Li‎ et al.
  • Biomolecules‎
  • 2022‎

Neurogenesis plays an important role in the prognosis of stroke patients and is known to be promoted by the activation of the Notch1 signaling pathway. Studies on the airway epithelium have shown that miR-449b represses the Notch pathway. The study aimed to investigate whether limb remote ischemic conditioning (LRIC) was able to promote neurogenesis in cerebral ischemic mice, and to investigate the role of the miR-449b/Notch1 pathway in LRIC-induced neuroprotection. Male C57BL/6 mice (22-25 g) were subjected to transient middle cerebral artery occlusion (MCAO), and LRIC was performed in the bilateral lower limbs immediately after MCA occlusion. Immunofluorescence staining was performed to assess neurogenesis. The cell line NE-4C was used to elucidate the proliferation of neuronal stem cells in 8% O2. After LRIC treatment on day 28, mice recovered neurological function. Neuronal precursor proliferation was enhanced in the SVZ, and neuronal precursor migration was enhanced in the basal ganglia on day 7. LRIC promoted the improvement of neurological function in mice on day 28, promoted neuronal precursor proliferation in the SVZ, and enhanced neuronal precursor migration in the basal ganglia on day 7. The neurological function score was negatively correlated with the number of BrdU-positive/DCX-positive cells in the SVZ and striatum. LRIC promoted activated Notch1 protein expression in the SVZ and substantially downregulated miR-449b levels in the SVZ and plasma. In vitro, miR-449b was found to target Notch1. Lentivirus-mediated miR-449b knockdown increased Notch1 levels in NE-4C cells and increased proliferation in the cells. The effects of miR-449b inhibition on neurogenesis were ablated by the application of Notch1 shRNA. Our study showed that LRIC promoted the proliferation and migration of neural stem cells after MCAO, and these effects were modulated by the miR-449b/Notch1 pathway.


Hypoxic postconditioning promotes neurogenesis by modulating the metabolism of neural stem cells after cerebral ischemia.

  • Haiyan Li‎ et al.
  • Experimental neurology‎
  • 2022‎

Ischemic stroke is one of the most lethal and severely disabling diseases that seriously affects human health and quality of life. The maintenance of self-renewal and differentiation of neural stem cells are closely related to metabolism. This study aimed to investigate whether hypoxic postconditioning (HPC) could promote neurogenesis after ischemic stroke, and to investigate the role of neuronal stem cell metabolism in HPC-induced neuroprotection. Male C57BL/6 mice were subjected to transient middle cerebral artery occlusion (MCAO), and HPC was performed for 3 h per day. Immunofluorescence staining was used to assess neurogenesis. The cell line NE-4C was used to elucidate the proliferation of neuronal stem cells in 21% O2 or 8% O2. HPC promoted the recovery of neurological function in mice on day 14. HPC promoted neuronal precursor proliferation in the subventricular zone (SVZ) on day 7 and enhanced neuronal precursor migration in the basal ganglia and cortex on day 14. Fatty acid oxidation (FAO) and glycolysis of neural stem cells in the SVZ changed after MCAO with or without HPC. HPC promoted the proliferation of NE-4C stem cells, decreased FAO and increased glycolysis. All these beneficial effects of HPC were ablated by the application of an FAO activator or a glycolysis inhibitor. In conclusion, cerebral ischemia modulated the FAO and glycolysis of neural stem cells. HPC promoted the proliferation and migration of neural stem cells after MCAO, and these effects may be related to the regulation of metabolism, including FAO and glycolysis.


A review of remote ischemic conditioning as a potential strategy for neural repair poststroke.

  • Wantong Yu‎ et al.
  • CNS neuroscience & therapeutics‎
  • 2023‎

Ischemic stroke is one of the major disabling health-care problem and multiple different approaches are needed to enhance rehabilitation, in which neural repair is the structural basement. Remote ischemic conditioning (RIC) is a strategy to trigger endogenous protect. RIC has been reported to play neuroprotective role in acute stage of stroke, but the effect of RIC on repair process remaining unclear. Several studies have discovered some overlapped mechanisms RIC and neural repair performs. This review provides a hypothesis that RIC is a potential therapeutic strategy on stroke rehabilitation by evaluating the existing evidence and puts forward some remaining questions to clarify and future researches to be performed in the field.


Immediate remote ischemic postconditioning reduces cerebral damage in ischemic stroke mice by enhancing leptomeningeal collateral circulation.

  • Ying Zhang‎ et al.
  • Journal of cellular physiology‎
  • 2019‎

Remote ischemic postconditioning (RIPC) is a promising neuroprotective strategy for ischemic stroke. Here, we employed a focal ischemic stroke mouse model to test the hypothesis that poststroke collateral circulation as a potent mechanism of action underlying the therapeutic effects of immediate RIPC. During reperfusion of cerebral ischemia, the mice were randomly assigned to receive RIPC, granulocyte colony-stimulating factor (G-CSF) as a positive control, or no treatment. At 24 hr, we found RIPC and G-CSF increased monocytes/macrophages in the dorsal brain surface and in the spleen, coupled with enhanced leptomeningeal collateral flow compared with nontreatment group. Blood monocytes depletion by 5-fluorouracil (5-FU) significantly limited the neuroprotection of RIPC or G-CSF treatment. The protein expression of proangiogenic factors such as Ang-2 was increased by ischemia, but treatment with either RIPC or G-CSF showed no further upregulation. Thus, immediate RIPC confers neuroprotection, in part, by enhancing leptomeningeal collateral circulation in a mouse model of ischemic stroke.


Limb Remote Ischemic Conditioning Ameliorates Cognitive Impairment in Rats with Chronic Cerebral Hypoperfusion by Regulating Glucose Transport.

  • Changhong Ren‎ et al.
  • Aging and disease‎
  • 2021‎

Cognitive impairment is closely associated with the slowing of glucose metabolism in the brain. Glucose transport, a rate-limiting step of glucose metabolism, plays a key role in this phenomenon. Previous studies have reported that limb remote ischemic conditioning (LRIC) improves cognitive performance in rats with chronic cerebral hypoperfusion (CCH). Here, we determined whether LRIC could ameliorate cognitive impairment in rats with CCH by regulating glucose transport. A total of 170 male Sprague-Dawley rats were used. Animals subjected to permanent double carotid artery occlusion (2VO) were assigned to the control or LRIC treatment group. LRIC was applied beginning 3 days after the 2VO surgery. We found that LRIC can improve learning and memory; decrease the ratio of ADP/ATP; increase glucose content; upregulate the expression of pAMPKα, GLUT1 and GLUT3; and increase the number of GLUT1 and GLUT3 transporters in cerebral cortical neurons. The expression of GLUT1 and GLUT3 in the cortex displayed a strong correlation with learning and memory. Pearson correlation analysis showed that the levels of GLUT1 and GLUT3 are correlated with neurological function scores. All of these beneficial effects of LRIC were ablated by application of the AMPK inhibitor, dorsomorphin. In summary, LRIC ameliorated cognitive impairment in rats with CCH by regulating glucose transport via the AMPK/GLUT signaling pathway. We conclude that AMPK-mediated glucose transport plays a key role in LRIC. These data also suggest that supplemental activation of glucose transport after CCH may provide a clinically applicable intervention for improving cognitive impairment.


Different expression of ubiquitin C-terminal hydrolase-L1 and αII-spectrin in ischemic and hemorrhagic stroke: Potential biomarkers in diagnosis.

  • Changhong Ren‎ et al.
  • Brain research‎
  • 2013‎

The two primary categories of stroke, ischemic and hemorrhagic, both have fundamentally different mechanisms and thus different treatment options. These two stroke categories were applied to rat models to identify potential biomarkers that can distinguish between them. Ischemic stroke was induced by middle cerebral artery occlusion (MCAO) without reperfusion while hemorrhagic stroke was induced by injecting collagenase IV into the striatum. Brain hemispheres and biofluids were collected at two time points: 3 and 6h after stroke. Known molecules were tested on the rat samples via quantitative immunoblotting (injured brain, CSF) and Banyan's proprietary ELISA assays (CSF, serum). The injured brain quantitative analyses revealed that αII-spectrin breakdown products (SBDP150, SBDP145) were strongly increased after 6h ischemia. In CSF, SBDP145 and ubiquitin C-terminal hydrolase-L1 (UCH-L1) levels were elevated after 6h ischemic stroke detected by Western blot and ELISA. In serum UCH-L1 levels were increased after 3 and 6h of ischemia detected by ELISA. However, levels of those proteins in hemorrhagic stroke remain normal. In summary, in both the brain and the biofluids, SBDPs and UCH-L1 were elevated after ischemic but not hemorrhagic stroke. These molecules behaved differently in the two stroke models and thus may be capable of being differentiated.


Acute Ischemic Stroke at High Altitudes in China: Early Onset and Severe Manifestations.

  • Moqi Liu‎ et al.
  • Cells‎
  • 2021‎

The detailed characteristics of strokes at high altitudes in diverse nations have not been extensively studied. We retrospectively enrolled 892 cases of first-ever acute ischemic strokes at altitudes of 20, 2550, and 4200 m in China (697 cases from Penglai, 122 cases from Huzhu, and 73 cases from Yushu). Clinical data and brain images were analyzed. Ischemic strokes at high altitudes were characterized by younger ages (69.14 ± 11.10 vs. 64.44 ± 11.50 vs. 64.45 ± 14.03, p < 0.001) and larger infract volumes (8436.37 ± 29,615.07 mm3 vs. 17,213.16 ± 47,044.74 mm3 vs. 42,459 ± 84,529.83 mm3, p < 0.001). The atherosclerotic factors at high altitude, including diabetes mellitus (28.8% vs. 17.2% vs. 9.6%, p < 0.001), coronary heart disease (14.3% vs. 1.6% vs. 4.1%, p < 0.001), and hyperlipidemia (20.2% vs. 17.2% vs. 8.2%, p = 0.031), were significantly fewer than those in plain areas. Polycythemia and hemoglobin levels (138.22 ± 18.04 g/L vs. 172.87 ± 31.57 g/L vs. 171.81 ± 29.55 g/L, p < 0.001), diastolic pressure (89.98 ± 12.99 mmHg vs. 93.07 ± 17.79 mmHg vs. 95.44 ± 17.86 mmHg, p = 0.016), the percentage of hyperhomocysteinemia (13.6% in Penglai vs. 41.8% in Huzhu, p < 0.001), and the percentage of smoking (33.1% in Penglai vs. 50.0% in Huzhu, p = 0.023) were significantly elevated at high altitudes. We concluded that ischemic stroke occurred earlier and more severely in the Chinese plateau. While the atherosclerotic factors were not prominent, the primary prevention of strokes at high altitudes should emphasize anticoagulation, reducing diastolic pressure, adopting a healthy diet, and smoking cessation.


Intensive Lipid-Lowering Therapy Ameliorates Asymptomatic Intracranial Atherosclerosis.

  • Huijuan Miao‎ et al.
  • Aging and disease‎
  • 2019‎

Statins have proven to exert protective effects in patients with symptomatic intracranial atherosclerotic stenosis (SICAS). It is unclear whether intensive lipid-lowering therapy (ILLT) can ameliorate atherosclerosis in asymptomatic ICAS (AICAS). A single-center, prospective cohort study was performed in 71 AICAS patients with lipid-lowering therapy. Vascular stenoses were evaluated with transcranial color-coded sonography (TCCS) before and after statin treatment. With target therapeutic level of low-density lipoprotein cholesterol (LDL-C) ≤ 1.8 mmol/L or ≥ 50% reduction from baseline after the two years of follow-up, patients were divided into intensive statin treatment (IST) group and standard statin treatment (SST) group. A total of 104 stenotic intracranial arteries were detected in 51 patients belonging to the IST group and 47 arteries in 20 patients of the SST group. In the first year, LDL-C levels were significantly decreased in the IST compared with SST groups (1.48 ± 0.26 vs. 2.20 ± 0.58, P=0.000). However, the ratio of regressed ICAS in IST was not significantly higher than that in SST (26.3% vs. 5.9%, P=0.052). Forty-nine branches in 25 patients of the IST group and 16 branches in 7 patients of the SST group were followed up for two years. The LDL-C level was decreased in the IST compared with SST groups (1.55 ± 0.29 vs. 2.36 ± 0.77, P=0.048). The ratio of regressed ICAS in the IST group was significantly higher than that in SST group (34.7% vs. 6.3%, P=0.017). We concluded that the degree of stenosis in AICAS can be ameliorated with intensive lipid-lowering therapy within two years; target LDL-C level can be reached by moderate-intensity statin treatment for Chinese AICAS patients.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: