Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 20 papers

Hypothalamic molecular changes underlying natural reproductive senescence in the female rat.

  • Bailey A Kermath‎ et al.
  • Endocrinology‎
  • 2014‎

The role of the hypothalamus in female reproductive senescence is unclear. Here we identified novel molecular neuroendocrine changes during the natural progression from regular reproductive cycles to acyclicity in middle-aged female rats, comparable with the perimenopausal progression in women. Expression of 48 neuroendocrine genes was quantified within three hypothalamic regions: the anteroventral periventricular nucleus, the site of steroid positive feedback onto GnRH neurons; the arcuate nucleus (ARC), the site of negative feedback and pulsatile GnRH release; and the median eminence (ME), the site of GnRH secretion. Surprisingly, the majority of changes occurred in the ARC and ME, with few effects in anteroventral periventricular nucleus. The overall pattern was increased mRNA levels with chronological age and decreases with reproductive cycle status in middle-aged rats. Affected genes included transcription factors (Stat5b, Arnt, Ahr), sex steroid hormone receptors (Esr1, Esr2, Pgr, Ar), steroidogenic enzymes (Sts, Hsd17b8), growth factors (Igf1, Tgfa), and neuropeptides (Kiss1, Tac2, Gnrh1). Bionetwork analysis revealed region-specific correlations between genes and hormones. Immunohistochemical analyses of kisspeptin and estrogen receptor-α in the ARC demonstrated age-related decreases in kisspeptin cell numbers as well as kisspeptin-estrogen receptor-α dual-labeled cells. Taken together, these results identify unexpectedly strong roles for the ME and ARC during reproductive decline and highlight fundamental differences between middle-aged rats with regular cycles and all other groups. Our data provide evidence of decreased excitatory stimulation and altered hormone feedback with aging and suggest novel neuroendocrine pathways that warrant future study. Furthermore, these changes may impact other neuroendocrine systems that undergo functional declines with age.


Androgens Drive Sex Biases in Hypothalamic Corticotropin-Releasing Hormone Gene Expression After Adrenalectomy of Mice.

  • Ashley L Heck‎ et al.
  • Endocrinology‎
  • 2019‎

Although prominent sex differences exist in the hypothalamic-pituitary-adrenal axis's response to stressors, few studies of its regulation in the hypothalamic paraventricular nucleus (PVN) have compared both male and female subjects. In this study, we sought to explore sex differences in the acute regulation of PVN neuropeptide expression following glucocorticoid (GC) removal and the underlying role of gonadal hormones. We first examined the effects of short-term adrenalectomy (ADX) on PVN Crh and arginine vasopressin (Avp) expression in mice using in situ hybridization. ADX increased PVN AVP mRNA levels in both sexes. In contrast, PVN CRH mRNA was increased by 2 days after ADX in males only. Both sexes showed increases in CRH mRNA after 4 days. To determine if gonadal hormones contributed to this sex bias, we examined adrenalectomized (ADX'd) and gonadectomized (GDX'd) mice with or without gonadal hormone replacement. Unlike the pattern in intact animals, 2 days following ADX/gonadectomy, CRH mRNA levels did not increase in either sex. When males were given DHT propionate, CRH mRNA levels increased in ADX'd/GDX'd males similar to those observed following ADX alone. To determine a potential mechanism, we examined the coexpression of androgen receptor (AR) immunoreactivity and CRH neurons. Abundant colocalization was found in the anteroventral bed nucleus of the stria terminalis but not the PVN. Thus, our findings reveal a sex difference in PVN Crh expression following the removal of GC-negative feedback that may depend on indirect AR actions in males.


Differential acute and chronic effects of leptin on hypothalamic astrocyte morphology and synaptic protein levels.

  • Cristina García-Cáceres‎ et al.
  • Endocrinology‎
  • 2011‎

Astrocytes participate in neuroendocrine functions partially through modulation of synaptic input density in the hypothalamus. Indeed, glial ensheathing of neurons is modified by specific hormones, thus determining the availability of neuronal membrane space for synaptic inputs, with the loss of this plasticity possibly being involved in pathological processes. Leptin modulates synaptic inputs in the hypothalamus, but whether astrocytes participate in this action is unknown. Here we report that astrocyte structural proteins, such as glial fibrillary acidic protein (GFAP) and vimentin, are induced and astrocyte morphology modified by chronic leptin administration (intracerebroventricular, 2 wk), with these changes being inversely related to modifications in synaptic protein densities. Similar changes in glial structural proteins were observed in adult male rats that had increased body weight and circulating leptin levels due to neonatal overnutrition (overnutrition: four pups/litter vs. control: 12 pups/litter). However, acute leptin treatment reduced hypothalamic GFAP levels and induced synaptic protein levels 1 h after administration, with no effect on vimentin. In primary hypothalamic astrocyte cultures leptin also reduced GFAP levels at 1 h, with an induction at 24 h, indicating a possible direct effect of leptin. Hence, one mechanism by which leptin may affect metabolism is by modifying hypothalamic astrocyte morphology, which in turn could alter synaptic inputs to hypothalamic neurons. Furthermore, the responses to acute and chronic leptin exposure are inverse, raising the possibility that increased glial activation in response to chronic leptin exposure could be involved in central leptin resistance.


The NK3 Receptor Antagonist ESN364 Interrupts Pulsatile LH Secretion and Moderates Levels of Ovarian Hormones Throughout the Menstrual Cycle.

  • Graeme L Fraser‎ et al.
  • Endocrinology‎
  • 2015‎

Women's health disorders such as uterine fibroids and endometriosis are currently treated by GnRH modulators that effectively suppress the hypothalamic-pituitary-gonadal axis. The neurokinin-3 receptor (NK3R) is an alternative target with an important role in the modulation of this axis. In this report, we demonstrate that systemic administration of an NK3R antagonist (ESN364) prolongs the LH interpulse interval in ovarectomized ewes and significantly lowers plasma LH and FSH concentrations in castrated nonhuman primates (Macaca fascicularis). Moreover, daily oral dosing of ESN364 throughout the menstrual cycle in M fascicularis lowered plasma estradiol levels in a dose-dependent manner, although nadir levels of estradiol were maintained well above menopausal levels. Nevertheless, estradiol levels during the follicular phase were sufficiently inhibited at all doses to preclude the triggering of ovulation as evidenced by the absence of the LH surge and failure of a subsequent luteal phase rise in plasma progesterone concentrations, consistent with the absence of normal cycle changes in the uterus. Apart from the point at surge, FSH levels were not altered over the course of the menstrual cycle. These effects of ESN364 were reversible upon cessation of drug treatment. Together these data support the proposed role of neurokinin B-NK3R signaling in the control of pulsatile GnRH secretion. Furthermore, in contrast to GnRH antagonists, NK3R antagonists induce a partial suppression of estradiol and thereby offer a viable therapeutic approach to the treatment of ovarian sex hormone disorders with a mitigated risk of menopausal-like adverse events in response to long-term drug exposure.


Estradiol modulates translocator protein (TSPO) and steroid acute regulatory protein (StAR) via protein kinase A (PKA) signaling in hypothalamic astrocytes.

  • Claire Chen‎ et al.
  • Endocrinology‎
  • 2014‎

The ability of the central nervous system to synthesize steroid hormones has wide-ranging implications for physiology and pathology. Among the proposed roles of neurosteroids is the regulation of the LH surge. This involvement in the estrogen-positive feedback demonstrates the integration of peripheral steroids with neurosteroids. Within the female hypothalamus, estradiol from developing follicles stimulates progesterone synthesis in astrocytes, which activate neural circuits regulating gonadotropin (GnRH) neurons. Estradiol acts at membrane estrogen receptor-α to activate cellular signaling that results in the release of inositol trisphosphate-sensitive calcium stores that are sufficient to induce neuroprogesterone synthesis. The purpose of the present studies was to characterize the estradiol-induced signaling leading to activation of steroid acute regulatory protein (StAR) and transporter protein (TSPO), which mediate the rate-limiting step in steroidogenesis, ie, the transport of cholesterol into the mitochondrion. Treatment of primary cultures of adult female rat hypothalamic astrocytes with estradiol induced a cascade of phosphorylation that resulted in the activation of a calcium-dependent adenylyl cyclase, AC1, elevation of cAMP, and activation of both StAR and TSPO. Blocking protein kinase A activation with H-89 abrogated the estradiol-induced neuroprogesterone synthesis. Thus, together with previous results, these experiments completed the characterization of how estradiol action at the membrane leads to the augmentation of neuroprogesterone synthesis through increasing cAMP, activation of protein kinase A, and the phosphorylation of TSPO and StAR in hypothalamic astrocytes.


Bmal1 Is Required for Normal Reproductive Behaviors in Male Mice.

  • Erica L Schoeller‎ et al.
  • Endocrinology‎
  • 2016‎

Circadian rhythms synchronize physiological processes with the light-dark cycle and are regulated by a hierarchical system initiated in the suprachiasmatic nucleus, a hypothalamic region that receives direct photic input. The suprachiasmatic nucleus then entrains additional oscillators in the periphery. Circadian rhythms are maintained by a molecular transcriptional feedback loop, of which brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 (BMAL1) is a key member. Disruption of circadian rhythms by deletion of the BMAL1 gene (Bmal1 knockout [KO]) induces a variety of disease states, including infertility in males, due to unidentified mechanisms. We find that, despite normal sperm function, Bmal1 KO males fail to mate with receptive females, indicating a behavioral defect. Mating is dependent on pheromone detection, as are several other behaviors. We determined that Bmal1 KO males also fail to display aggression and avoidance of predator scent, despite intact main olfactory function. Moreover, the vomeronasal organ, a specialized pheromone-responsive organ, was also functionally intact, as determined by calcium imaging in response to urine pheromone stimulus. However, neural circuit tracing using c-FOS activation revealed that, although Bmal1 KO males displayed appropriate activation in the olfactory bulb and accessory olfactory bulb, the bed nucleus of the stria terminalis and the medial preoptic area (areas responsible for integration of copulatory behaviors) failed to activate highly in response to the female scent. This indicates that neural signaling in select behavioral centers is impaired in the absence of BMAL1, likely underlying Bmal1 KO male copulatory defects, demonstrating the importance of the BMAL1 protein in the maintenance of neural circuits that drive pheromone-mediated mating behaviors.


Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Regulates the Hypothalamo-Pituitary-Thyroid (HPT) Axis via Type 2 Deiodinase in Male Mice.

  • P Egri‎ et al.
  • Endocrinology‎
  • 2016‎

The hypothalamic activation of thyroid hormones by type 2 deiodinase (D2), catalyzing the conversion of thyroxine to T3, is critical for the proper function of the hypothalamo-pituitary-thyroid (HPT) axis. Regulation of D2 expression in tanycytes alters the activity of the HPT axis. However, signals that regulate D2 expression in tanycytes are poorly understood. The pituitary adenylate cyclase-activating polypeptide (PACAP) increases intracellular cAMP level, a second messenger known to stimulate the DIO2 gene; however, its importance in tanycytes is not completely characterized. Therefore, we tested whether this ubiquitously expressed neuropeptide regulates the HPT axis through stimulation of D2 in tanycytes. PACAP increased the activity of human DIO2 promoter in luciferase reporter assay that was abolished by mutation of cAMP-response element. Furthermore, PAC1R receptor immunoreactivity was identified in hypothalamic tanycytes, suggesting that these D2-expressing cells could be regulated by PACAP. Intracerebroventricular PACAP administration resulted in increased D2 activity in the mediobasal hypothalamus, suppressed Trh expression in the hypothalamic paraventricular nucleus, and decreased Tshb expression in the pituitary demonstrating that PACAP affects the D2-mediated control of the HPT axis. To understand the role of endogenous PACAP in the regulation of HPT axis, the effect of decreased PACAP expression was studied in heterozygous Adcyap1 (PACAP) knockout mice. These animals were hypothyroid that may be the consequence of altered hypothalamic T3 degradation during set-point formation of the HPT axis. In conclusion, PACAP is an endogenous regulator of the HPT axis by affecting T3-mediated negative feedback via cAMP-induced D2 expression of tanycytes.


ERα in Tac2 Neurons Regulates Puberty Onset in Female Mice.

  • Megan L Greenwald-Yarnell‎ et al.
  • Endocrinology‎
  • 2016‎

A variety of data suggest that estrogen action on kisspeptin (Kiss1)-containing arcuate nucleus neurons (which coexpress Kiss1, neurokinin B (the product of Tac2) and dynorphin (KNDy) neurons restrains reproductive onset and function, but roles for estrogen action in these Kiss1 neurons relative to a distinct population of rostral hypothalamic Kiss1 neurons (which does not express Tac2 or dynorphin) have not been directly tested. To test the role for estrogen receptor (ER)α in KNDy cells, we thus generated Tac2(Cre) and Kiss1(Cre) knock-in mice and bred them onto the Esr1(flox) background to ablate ERα specifically in Tac2-expressing cells (ERα(Tac2)KO mice) or all Kiss1 cells (ERα(Kiss1)KO mice), respectively. Most ERα-expressing Tac2 neurons represent KNDy cells. Arcuate nucleus Kiss1 expression was elevated in ERα(Tac2)KO and ERα(Kiss1)KO females independent of gonadal hormones, whereas rostral hypothalamic Kiss1 expression was normal in ERα(Tac2)KO but decreased in ERα(Kiss1)KO females; this suggests that ERα in rostral Kiss1 cells is crucial for control of Kiss1 expression in these cells. Both ERα(Kiss1)KO and ERα(Tac2)KO females displayed early vaginal opening, early and persistent vaginal cornification, increased gonadotropins, uterine hypertrophy, and other evidence of estrogen excess. Thus, deletion of ERα in Tac2 neurons suffices to drive precocious gonadal hyperstimulation, demonstrating that ERα in Tac2 neurons typically restrains pubertal onset and hypothalamic reproductive drive.


Androgens Mediate Sex-Dependent Gonadotropin Expression During Late Prenatal Development in the Mouse.

  • Michael J Kreisman‎ et al.
  • Endocrinology‎
  • 2017‎

Central organization of the hypothalamic-pituitary-gonadal axis is initiated during fetal life. At this critical time, gonadal hormones mediate sex-specific development of the hypothalamic-pituitary axis, which then dictates reproductive physiology and behavior in adulthood. Although studies have investigated the effects of prenatal androgens on central factors influencing gonadotropin-releasing hormone (GnRH) release, the impact of fetal androgens on gonadotrope function has been overlooked. In the current study, we demonstrated that gonadotropin gene expression and protein production were robustly elevated in female mice compared with males during late fetal development and that this sex difference was dependent on fetal androgens. Treatment of dams from embryonic day (E)15.5 to E17.5 with testosterone, dihydrotestosterone (DHT), or the androgen antagonist flutamide eliminated the sex difference at E18.5. Specifically, flutamide relieved the suppression in male gene expression, elevating the level to that of females, whereas testosterone or DHT attenuated female gene expression to male levels. The gonadotrope population is equivalent in males and females, and gonadotropic cells in both sexes express androgen receptors, suggesting that androgen-dependent transcriptional regulation can occur in these cells in either sex. Studies using mouse models lacking GnRH signaling show that GnRH is necessary for enhanced gonadotropin expression in females and is therefore required to observe the sex difference. Collectively, these data suggest that circuits controlling GnRH input to the fetal pituitary are unrestrained in females yet robustly inhibited in males via circulating androgens and demonstrate plasticity in gonadotropin synthesis and secretion in both sexes depending on the androgen milieu during late prenatal development.


Sex Dimorphic Changes in Trh Gene Methylation and Thyroid-Axis Response to Energy Demands in Maternally Separated Rats.

  • Lorraine Jaimes-Hoy‎ et al.
  • Endocrinology‎
  • 2021‎

The hypothalamus-pituitary-thyroid (HPT) axis regulates energy balance through the pleiotropic action of thyroid hormones. HPT basal activity and stimulation by cold or voluntary exercise are repressed by previous chronic stress in adults. Maternal separation (MS) modifies HPT basal activity; we thus studied the response of the axis to energy demands and analyzed possible epigenetic changes on Trh promoter. Nonhandled (NH) or MS male Wistar rats were cold exposed 1 h at adulthood; Trh expression in the hypothalamic paraventricular nucleus (PVN) and serum thyrotropin (TSH) concentration were increased only in NH rats. Two weeks of voluntary exercise decreased fat mass and increased Trh expression, and thyroid hormones concentration changed proportionally to running distance in NH male rats and MS male rats. Although NH females ran more than MS and much more than males, exercise decreased body weight and fat mass only in NH rats with no change on any parameter of the HPT axis but increased Pomc expression in arcuate-nucleus of NH and Npy in MS females. Overall, the methylation pattern of PVN Trh gene promoter was similar in NH males and females; MS modified methylation of specific CpG sites, a thyroid hormone receptor (THR)-binding site present after the initiation site was hypomethylated in MS males; in MS females, the THR binding site of the proximal promoter (site 4) and 2 sites in the first intron were hypermethylated. Our studies showed that, in a sex-dimorphic manner, MS blunted the responses of HPT axis to energy demands in adult animals and caused methylation changes on Trh promoter that could alter T3 feedback.


Intracerebroventricular Catalase Reduces Hepatic Insulin Sensitivity and Increases Responses to Hypoglycemia in Rats.

  • S Pauliina Markkula‎ et al.
  • Endocrinology‎
  • 2016‎

Specialized metabolic sensors in the hypothalamus regulate blood glucose levels by influencing hepatic glucose output and hypoglycemic counterregulatory responses. Hypothalamic reactive oxygen species (ROS) may act as a metabolic signal-mediating responses to changes in glucose, other substrates and hormones. The role of ROS in the brain's control of glucose homeostasis remains unclear. We hypothesized that hydrogen peroxide (H2O2), a relatively stable form of ROS, acts as a sensor of neuronal glucose consumption and availability and that lowering brain H2O2 with the enzyme catalase would lead to systemic responses increasing blood glucose. During hyperinsulinemic euglycemic clamps in rats, intracerebroventricular catalase infusion resulted in increased hepatic glucose output, which was associated with reduced neuronal activity in the arcuate nucleus of the hypothalamus. Electrophysiological recordings revealed a subset of arcuate nucleus neurons expressing proopiomelanocortin that were inhibited by catalase and excited by H2O2. During hypoglycemic clamps, intracerebroventricular catalase increased glucagon and epinephrine responses to hypoglycemia, consistent with perceived lower glucose levels. Our data suggest that H2O2 represents an important metabolic cue, which, through tuning the electrical activity of key neuronal populations such as proopiomelanocortin neurons, may have a role in the brain's influence of glucose homeostasis and energy balance.


Loss of Action via Neurotensin-Leptin Receptor Neurons Disrupts Leptin and Ghrelin-Mediated Control of Energy Balance.

  • Juliette A Brown‎ et al.
  • Endocrinology‎
  • 2017‎

The hormones ghrelin and leptin act via the lateral hypothalamic area (LHA) to modify energy balance, but the underlying neural mechanisms remain unclear. We investigated how leptin and ghrelin engage LHA neurons to modify energy balance behaviors and whether there is any crosstalk between leptin and ghrelin-responsive circuits. We demonstrate that ghrelin activates LHA neurons expressing hypocretin/orexin (OX) to increase food intake. Leptin mediates anorectic actions via separate neurons expressing the long form of the leptin receptor (LepRb), many of which coexpress the neuropeptide neurotensin (Nts); we refer to these as NtsLepRb neurons. Because NtsLepRb neurons inhibit OX neurons, we hypothesized that disruption of the NtsLepRb neuronal circuit would impair both NtsLepRb and OX neurons from responding to their respective hormonal cues, thus compromising adaptive energy balance. Indeed, mice with developmental deletion of LepRb specifically from NtsLepRb neurons exhibit blunted adaptive responses to leptin and ghrelin that discoordinate the mesolimbic dopamine system and ingestive and locomotor behaviors, leading to weight gain. Collectively, these data reveal a crucial role for LepRb in the proper formation of LHA circuits, and that NtsLepRb neurons are important neuronal hubs within the LHA for hormone-mediated control of ingestive and locomotor behaviors.


Dopaminergic Neurons Controlling Anterior Pituitary Functions: Anatomy and Ontogenesis in Zebrafish.

  • Romain Fontaine‎ et al.
  • Endocrinology‎
  • 2015‎

Dopaminergic (DA) neurons located in the preoptico-hypothalamic region of the brain exert a major neuroendocrine control on reproduction, growth, and homeostasis by regulating the secretion of anterior pituitary (or adenohypophysis) hormones. Here, using a retrograde tract tracing experiment, we identified the neurons playing this role in the zebrafish. The DA cells projecting directly to the anterior pituitary are localized in the most anteroventral part of the preoptic area, and we named them preoptico-hypophyseal DA (POHDA) neurons. During development, these neurons do not appear before 72 hours postfertilization (hpf) and are the last dopaminergic cell group to differentiate. We found that the number of neurons in this cell population continues to increase throughout life proportionally to the growth of the fish. 5-Bromo-2'-deoxyuridine incorporation analysis suggested that this increase is due to continuous neurogenesis and not due to a phenotypic change in already-existing neurons. Finally, expression profiles of several genes (foxg1a, dlx2a, and nr4a2a/b) were different in the POHDA compared with the adjacent suprachiasmatic DA neurons, suggesting that POHDA neurons develop as a distinct DA cell population in the preoptic area. This study offers some insights into the regional identity of the preoptic area and provides the first bases for future functional genetic studies on the development of DA neurons controlling anterior pituitary functions.


Control of Polyamine Biosynthesis by Antizyme Inhibitor 1 Is Important for Transcriptional Regulation of Arginine Vasopressin in the Male Rat Hypothalamus.

  • Michael P Greenwood‎ et al.
  • Endocrinology‎
  • 2015‎

The polyamines spermidine and spermine are small cations present in all living cells. In the brain, these cations are particularly abundant in the neurons of the paraventricular (PVN) and supraoptic nuclei (SON) of the hypothalamus, which synthesize the neuropeptide hormones arginine vasopressin (AVP) and oxytocin. We recently reported increased mRNA expression of antizyme inhibitor 1 (Azin1), an important regulator of polyamine synthesis, in rat SON and PVN as a consequence of 3 days of dehydration. Here we show that AZIN1 protein is highly expressed in both AVP- and oxytocin-positive magnocellular neurons of the SON and PVN together with antizyme 1 (AZ1), ornithine decarboxylase, and polyamines. Azin1 mRNA expression increased in the SON and PVN as a consequence of dehydration, salt loading, and acute hypertonic stress. In organotypic hypothalamic cultures, addition of the irreversible ornithine decarboxylase inhibitor DL-2-(difluoromethyl)-ornithine hydrochloride significantly increased the abundance of heteronuclear AVP but not heteronuclear oxytocin. To identify the function of Azin1 in vivo, lentiviral vectors that either overexpress or knock down Azin1 were stereotaxically delivered into the SON and/or PVN. Azin1 short hairpin RNA delivery resulted in decreased plasma osmolality and had a significant effect on food intake. The expression of AVP mRNA was also significantly increased in the SON by Azin1 short hairpin RNA. In contrast, Azin1 overexpression in the SON decreased AVP mRNA expression. We have therefore identified AZIN1, and hence by inference, polyamines as novel regulators of the expression of the AVP gene.


GnRH Regulates Gonadotropin Gene Expression Through NADPH/Dual Oxidase-Derived Reactive Oxygen Species.

  • Taeshin Kim‎ et al.
  • Endocrinology‎
  • 2015‎

The appropriate control of synthesis and secretion of the gonadotropin hormones LH and FSH by pituitary gonadotropes is essential for the regulation of reproduction. The hypothalamic neuropeptide GnRH is the central regulator of both processes, coordinating secretion with transcription and translation of the gonadotropin hormone subunit genes. The MAPK family of second messengers is strongly induced in gonadotropes upon GnRH stimulation, and multiple pathways activate these kinases. Intracellular reactive oxygen species participate in signaling cascades that target MAPKs, but also participate in signaling events indicative of cell stress. The NADPH oxidase (NOX)/dual oxidase (DUOX) family is a major enzymatic source of intracellular reactive oxygen, and we show that GnRH stimulation of mouse primary pituitary cells and the LβT2 gonadotrope cell line elevates intracellular reactive oxygen via NOX/DUOX activity. Mouse pituitary and LβT2 cells abundantly express NOX/DUOX and cofactor mRNAs. Pharmacological inhibition of NOX/DUOX activity diminishes GnRH-stimulated activation of MAPKs, immediate-early gene expression, and gonadotropin subunit gene expression. Inhibitor studies implicate the calcium-activated DUOX family as a major, but not exclusive, participant in GnRH signaling. Knockdown of DUOX2 in LβT2 cells reduces GnRH-induced Fshb, but not Lhb mRNA levels, suggesting differential sensitivity to DUOX activity. Finally, GnRH pulse-stimulated FSH and LH secretion are suppressed by inhibition of NOX/DUOX activity. These results indicate that reactive oxygen is a potent signaling intermediate produced in response to GnRH stimulation and further suggest that reactive oxygen derived from other sources may influence the gonadotrope response to GnRH stimulation.


SRXN1 Is Necessary for Resolution of GnRH-Induced Oxidative Stress and Induction of Gonadotropin Gene Expression.

  • Taeshin Kim‎ et al.
  • Endocrinology‎
  • 2019‎

A defining characteristic of the hypothalamus-pituitary-gonad reproductive endocrine axis is the episodic secretion of the pituitary gonadotropin hormones LH and FSH by the anterior pituitary gonadotropes. Hormone secretion is dictated by pulsatile stimulation, with GnRH released by hypothalamic neurons that bind and activate the G protein-coupled GnRH receptor expressed by gonadotropes. Hormone secretion and synthesis of gonadotropins are influenced by the amplitude and frequency of GnRH stimulation; variation in either affects the proportion of LH and FSH secreted and the differential regulation of hormone subunit gene expression. Therefore, proper decoding of GnRH signals is essential for appropriate gonadotropin synthesis and secretion. The GnRH receptor robustly activates downstream signaling cascades to facilitate exocytosis and stimulate gene expression and protein synthesis. It is necessary to rapidly quench signaling to preserve sensitivity and adaptability to changing pulse patterns. Reactive oxygen species (ROS) generated by receptor-activated oxidases fulfill the role of rapid signaling intermediates that facilitate robust and transient signaling. However, excess ROS can be detrimental and, unchecked, can confuse signal interpretation. We demonstrate that sulfiredoxin (SRXN1), an ATP-dependent reductase, is essential for normal responses to GnRH receptor signaling and plays a central role in resolution of ROS induced by GnRH stimulation. SRXN1 expression is mitogen-activated protein kinase dependent, and knockdown reduces Lhb and Fshb glycoprotein hormone subunit mRNA and promoter activity. Loss of SRXN1 leads to increased basal and GnRH-stimulated ROS levels. We conclude that SRXN1 is essential for normal responses to GnRH stimulation and plays an important role in ROS management.


Thyroid Hormone-Dependent Epigenetic Regulation of Melanocortin 4 Receptor Levels in Female Offspring of Obese Rats.

  • Tzlil Tabachnik‎ et al.
  • Endocrinology‎
  • 2017‎

Maternal obesity is a risk factor for offspring obesity. The melanocortin 4 receptor (Mc4r) is one of the mediators of food intake and energy balance. The present study examined the epigenetic mechanisms underlying altered Mc4r levels in the hypothalamic paraventricular nucleus in the offspring of high-fat diet (HFD)-induced obese dams and sought to elucidate the role of thyroid hormones in epigenetic regulation and tagging of their nucleosome at the Mc4r promoter. Female Wistar rats were fed an HFD or standard chow from weaning through gestation and lactation. Epigenetic alterations were analyzed in the offspring on postnatal day 21 at the Mc4r promoter using chromatin immunoprecipitation and bisulfite sequencing. To study the role of triiodothyronine (T3) in Mc4r downregulation, dams received methimazole (MMI), an inhibitor of thyroid hormone production. Offspring of HFD-fed dams had a greater body weight, elevated plasma T3 concentrations, and lower Mc4r messenger RNA levels than controls. At the Mc4r promoter, offspring of HFD-fed mothers demonstrated increased histone 3 lysine 27 acetylation (H3K27ac) with a greater association to thyroid hormone receptor-β (TRβ), an inhibitor of Mc4r transcription. Moreover, TRβ coimmunoprecipitated with H3K27ac, supporting their presence in the same complex. Maternal MMI administration prevented the HFD reduction in Mc4r levels, the increase in TRβ, and the increase in the TRβ-H3K27ac association, providing further support for the role of T3 in downregulating Mc4r levels. These findings demonstrate that a perinatal HFD environment affects Mc4r regulation through a T3 metabolic pathway involving histone acetylation of its promoter.


The Power of the Heterogeneous Stock Rat Founder Strains in Modeling Metabolic Disease.

  • Valerie A Wagner‎ et al.
  • Endocrinology‎
  • 2023‎

Metabolic diseases are a host of complex conditions, including obesity, diabetes mellitus, and metabolic syndrome. Endocrine control systems (eg, adrenals, thyroid, gonads) are causally linked to metabolic health outcomes. N/NIH Heterogeneous Stock (HS) rats are a genetically heterogeneous outbred population developed for genetic studies of complex traits. Genetic mapping studies in adult HS rats identified loci associated with cardiometabolic risks, such as glucose intolerance, insulin resistance, and increased body mass index. This study determined underappreciated metabolic health traits and the associated endocrine glands within available substrains of the HS rat founders. We hypothesize that the genetic diversity of the HS rat founder strains causes a range of endocrine health conditions contributing to the diversity of cardiometabolic disease risks. ACI/EurMcwi, BN/NHsdMcwi, BUF/MnaMcwi, F344/StmMcwi, M520/NRrrcMcwi, and WKY/NCrl rats of both sexes were studied from birth until 13 weeks of age. Birth weight was recorded, body weight was measured weekly, metabolic characteristics were assessed, and blood and tissues were collected. Our data show wide variation in endocrine traits and metabolic health states in ACI, BN, BUF, F344, M520, and WKY rat strains. This is the first report to compare birth weight, resting metabolic rate, endocrine gland weight, hypothalamic-pituitary-thyroid axis hormones, and brown adipose tissue weight in these rat strains. Importantly, this work unveils new potential for the HS rat population to model early life adversity and adrenal and thyroid pathophysiology. The HS population likely inherited risk alleles for these strain-specific traits, making the HS rat a powerful model to investigate interventions on endocrine and metabolic health.


Leptin suppresses ghrelin-induced activation of neuropeptide Y neurons in the arcuate nucleus via phosphatidylinositol 3-kinase- and phosphodiesterase 3-mediated pathway.

  • Daisuke Kohno‎ et al.
  • Endocrinology‎
  • 2007‎

Neuropeptide Y (NPY) neurons in the hypothalamic arcuate nucleus (ARC) play a central role in stimulation of feeding. They sense and integrate peripheral and central signals, including ghrelin and leptin. However, the mechanisms of interaction of these hormones in NPY neurons are largely unknown. This study explored the interaction and underlying signaling cross talk between ghrelin and leptin in NPY neurons. Cytosolic Ca(2+) concentration ([Ca(2+)](i)) in single neurons isolated from ARC of adult rats was measured by fura-2 microfluorometry. Ghrelin increased [Ca(2+)](i) in 31% of ARC neurons. The [Ca(2+)](i) increases were inhibited by blockers of phospholipase C, adenylate cyclase, and protein kinase A. Ghrelin-induced [Ca(2+)](i) increases were suppressed by subsequent administration of leptin. Fifteen of 18 ghrelin-activated, leptin-suppressed neurons (83%) contained NPY. Leptin suppression of ghrelin responses was prevented by pretreatment with inhibitors of phosphatidylinositol 3-kinase and phosphodiesterase 3 (PDE3) but not MAPK. ATP-sensitive potassium channel inhibitors and activators did not prevent and mimic leptin suppression, respectively. Although leptin phosphorylated signal-transducer and activator of transcription 3 (STAT3) in NPY neurons, neither STAT3 inhibitor nor genetic STAT3 deletion altered leptin suppression of ghrelin responses. Furthermore, orexigenic effect of intracerebroventricular ghrelin in rats was counteracted by leptin in a PDE3-dependent manner. These findings indicate that ghrelin increases [Ca(2+)](i) via mechanisms depending on phospholipase C and adenylate cyclase-PKA pathways in ARC NPY neurons and that leptin counteracts ghrelin responses via a phosphatidylinositol 3-kinase-PDE3 pathway. This interaction may play an important role in regulating ARC NPY neuron activity and, thereby, feeding.


Brain STAT5 Modulates Long-Term Metabolic and Epigenetic Changes Induced by Pregnancy and Lactation in Female Mice.

  • Pryscila D S Teixeira‎ et al.
  • Endocrinology‎
  • 2019‎

Several metabolic and behavioral adaptations that emerge during pregnancy remain present after weaning. Thus, reproductive experience causes long-lasting metabolic programming, particularly in the brain. However, the isolate effects of pregnancy or lactation and the molecular mechanisms involved in these long-term modifications are currently unknown. In the current study, we investigated the role of brain signal transducer and activator of transcription-5 (STAT5), a key transcription factor recruited by hormones highly secreted during gestation or lactation, for the long-term adaptations induced by reproductive experience. In control mice, pregnancy followed by lactation led to increased body adiposity and reduced ambulatory activity later in life. Additionally, pregnancy+lactation induced long-term epigenetic modifications in the brain: we observed upregulation in hypothalamic expression of histone deacetylases and reduced numbers of neurons with histone H3 acetylation in the paraventricular, arcuate, and ventromedial nuclei. Remarkably, brain-specific STAT5 ablation prevented all metabolic and epigenetic changes observed in reproductively experienced control female mice. Nonetheless, brain-specific STAT5 knockout (KO) mice that had the experience of pregnancy but did not lactate showed increased body weight and reduced energy expenditure later in life, whereas pregnancy KO and pregnancy+lactation KO mice exhibited improved insulin sensitivity compared with virgin KO mice. In summary, lactation is necessary for the long-lasting metabolic effects observed in reproductively experienced female mice. In addition, epigenetic mechanisms involving histone acetylation in neuronal populations related to energy balance regulation are possibly associated with these long-term consequences. Finally, our findings highlighted the key role played by brain STAT5 signaling for the chronic metabolic and epigenetic changes induced by pregnancy and lactation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: