Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Predicting the anti-inflammatory mechanism of Radix Astragali using network pharmacology and molecular docking.

  • Jianwei Ren‎ et al.
  • Medicine‎
  • 2023‎

According to current research, the primary active ingredients of Radix Astragali (RA), such as saponins, flavonoids, and polysaccharides, play an important role in anti-inflammatory effects. However, the exact molecular mechanism underlying the action was not elucidated to date. Our research attempted to determine the active components in RA and to investigate the interaction between the active components and targets involved in the anti-inflammation activity by network pharmacology and molecular docking. The active components and targets of RA were screened out by TCMSP. Thereafter, through the "anti-inflammation effect" and "inflammation" as the keywords, disease targets were obtained from the GeneCards database. The PPI network was constructed with Cytoscape 3.8.0 software to screen core targets. The GO function and KEGG analysis were enriched and analyzed through the Metascape platform, obtaining the 3-dimensional view of the core targets from the PDB database, and then, performing molecular docking in AutoDock Vina, a heatmap was constructed using the binding free energies in GraphPad Prism 8. The Discovery Studio software was used for docking analysis, and eventually, the docking results were visualized. We also explored the targets and signaling pathways of Astragaloside IV acting on anti-inflammatory effects via constructing compound-disease-target-pathway network. 18 active components and 45 targets of RA were screened out. The main anti-inflammatory active components of RA were quercetin, Astragaloside IV, kaempferol, 7-O-methylisomucronulatol, and formononetin, and the strongly interacting core proteins were TNF, IL6, IL1B, TLR4, CXCL8, CCL2, IL10, VEGFA, and MMP9. The signal pathways mainly involved include Lipid and atherosclerosis, IL-17 signaling pathway, Chagas disease, leishmaniasis, and TNF signaling pathway. Moreover, molecular docking showed that the 2 most active compounds, Astragaloside IV and kaempferol, could efficiently bind with the targets TNF, TLR4, and IL10. Astragaloside IV may play a part in anti-inflammatory effects through pathways such as HIF-1 signaling pathway, Inflammatory bowel disease and Hepatitis B ect. RA exhibits the characteristic of multicomponent and multitarget synergistic effects in exerting anti-inflammatory effects and the effective component of RA is Astragaloside IV, targeting TNF, TLR4, and IL10.


Common mechanisms of Wumei pills in treating ulcerative colitis and type 2 diabetes: Exploring an integrative approach through network pharmacology.

  • Chang Sun‎ et al.
  • Medicine‎
  • 2024‎

Wumei pills (WMP), a classical Chinese herbal formula, have shown efficacy in the treatment of ulcerative colitis (UC) and type 2 diabetes (T2DM). However, the underlying mechanisms by which WMP simultaneously targets these distinct diseases remain unclear. In this study, a network pharmacology approach was employed to unravel the potential molecular mechanisms of WMP in UC and T2DM treatment. This analysis provides a bioinformatics foundation for the traditional Chinese medicine concept of "treating different diseases with the same treatment." WMP was found to contain 65 active components, including flavonoids, sterols, and alkaloids, that act on 228 shared targets for UC and T2DM. Network analysis identified 5 core compounds (Quercetin, Kaempferol, beta-Sitosterol, Isocorypalmine, Stigmasterol) and 8 core proteins (AKT1, ESR1, TP53, IL6, JUN, MYC, TNF, EGFR) that play pivotal roles in the treatment of UC and T2DM by WMP. WMP exerts its therapeutic effects by modulating signaling pathways, including the NF-κB pathway, PI3K-Akt pathway, and p53 pathway. Molecular docking results indicate a strong binding affinity between core compounds and core genes. This study bridges the understanding of 2 diseases using network pharmacology and provides insights into shared therapeutic mechanisms, opening doors for further research in modern Chinese herbal formulations.


Exploring the mechanism of astragalus membranaceus in the treatment of multiple system atrophy based on network pharmacology and molecular docking.

  • Ni Yang‎ et al.
  • Medicine‎
  • 2023‎

Multiple system atrophy (MSA) is a fatal neurodegenerative disease, it causes functional degradation of multiple organs and systems throughout the body. Astragalus membranaceus (AM), a well-known traditional Chinese medicine, has been used to improve muscle wasting-related disorders for a long history. In this study, we used network pharmacology and molecular docking to predict the mechanism underlying AM for the treatment of MSA. We screened the active compounds of AM and its related targets, as well as the target proteins of MSA. We made a Venn diagram to obtain the intersecting targets and then constructed a protein-protein interaction network to find the core targets and build an active ingredient-target network map. After subjecting the intersecting targets to gene ontology and Kyoto encyclopedia of genes and genomes analysis, the binding ability of core compounds and core target proteins were validated by molecular docking. A total of 20 eligible compounds and 274 intersecting targets were obtained. The core components of treatment are quercetin, kaempferol, and isorhamnetin, and the core targets are TP53, RELA, and TNF. The main biological processes are related to cellular responses and regulation. Molecular functions are mainly associated with apoptosis, inflammation, and tumorigenesis. Molecular docking results show good and standard binding abilities. This study illustrates that AM treats MSA through multiple targets and pathways, and provides a reference for subsequent research.


Exploring the mechanism of Buyang Huanwu decoction in the treatment of lumbar disc herniation based on network pharmacology and molecular docking.

  • Yong Gu‎ et al.
  • Medicine‎
  • 2022‎

Buyang Huanwu decoction (BYHWD), as one of the traditional Chinese medicine formulas, is widely used in the clinical treatment of lumbar disc herniation (LDH) with curative effect. It has the characteristics of multi-component, multi-target, and mutual synergy, but the mechanism of action is often unclear. It needs some research to explore the molecular mechanism of BYHWD in the treatment of LDH based on network pharmacology and molecular docking. Screen the active compounds of BYHWD and predict drug-related gene/protein targets, which could determine the specific target of BYHWD in the treatment of LDH. Construct the "Drugs-Compounds-Targets" network and search for the core targets. Use Gene Ontology functional enrichment analysis, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, and molecular docking verification to explore the possible molecular mechanism. Eighty-two effective compounds and 666 targets of BYHWD, 187 targets for LDH treatment, and 20 core candidate targets were excavated. A total of 3414 entries were identified by Gene Ontology enrichment analysis, 173 related signal pathways were identified by Kyoto Encyclopedia of Genes and Genomes enrichment analysis, and 5 core compounds were identified by molecular docking, which had a good affinity with core genes STAT3, JUN, AKT1, MAPK1, RELA, and PIK3CA. BYHWD may play the role of analgesic and improving function by synergistic anti-inflammatory and analgesic compounds, regulating cell metabolic differentiation, regulating immunity, and anticoagulation. BYHWD in the treatment of LDH may play a role in analgesia and improve function through multiple signaling pathways, including PI3K-Akt, mitogen-activated protein kinase, tumor necrosis factor, and interleukin-17. The PI3K-Akt signaling may be one of the key mechanisms.


Study on the mechanism of Jin Gui Shen Qi Pill in the treatment of erectile dysfunction based on bioinformatics analysis.

  • Jingjing Xiang‎ et al.
  • Medicine‎
  • 2022‎

Erectile dysfunction (ED) is a male disease, which is easy to cause disharmony in sexual life. However, at present, there are few drugs with small side effects in clinic. Jin Gui Shen Qi Pill (JGSQP) is a traditional Chinese medicine compound with obvious clinical effect in treating ED. Therefore, it is imperative to explore clinical drugs based on inhibiting the pathological characteristics of ED. First, the active ingredients and action targets in JGSQP were screened by applying Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and SWISS Target Prediction. Further, a systematic pharmacological analysis platform for traditional Chinese medicine, and the ED targets were screened by applying Gene Cards and Online Mendelian Inheritance in Man databases to construct drug active ingredient-target-disease mapping, followed by gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction (PPI) network analysis. Finally, Molecular docking and molecular dynamics simulations were used to screen the active ingredients of JGSQP acting on PDE-5, and analyze the ligand-receptor interaction relationship and binding free energy. The results showed that there were 212 potential targets of JGSQP for ED disease, and GO analysis revealed that the main pathways were positive regulation of DNA-binding transcription factor activity, regulation of vascular diameter, and negative regulation of vascular diameter, etc. KEGG analysis revealed that the main pathways were HIF-1 signaling pathway, prolactin signaling pathway, fluid shear stress, and atherosclerosis, etc. PPI network analysis revealed that the core targets TGFB1 and EGFR have important roles. Molecular docking and molecular dynamics simulations showed that the main components acting on PDE-5 were MOL000546, MOL011169, MOL000279, MOL000273 and Sildenafil. MOL000546 was able to bind stably to PDE-5. The multi-component, multi-target, and multi-pathway action characteristics of JGSQP were confirmed by network pharmacology, which predicted the possible mechanism of action of JGSQP in the treatment of ED and provided a theoretical reference for further experimental validation.


Network pharmacology-based strategy for predicting therapy targets of Ecliptae Herba on breast cancer.

  • Hui Li‎ et al.
  • Medicine‎
  • 2023‎

Breast cancer is a prevalent malignancy affecting women globally, characterized by significant morbidity and mortality rates. Ecliptae Herba is a traditional herbal medicine commonly used in clinical practice, has recently been found to possess antitumor properties. In order to explore the underlying material basis and molecular mechanisms responsible for the anti-breast cancer effects of Ecliptae Herba, we used network pharmacology and experimental verification. UPLC-MS/MS was utilized to identify compounds present in Ecliptae Herba. The active components of Ecliptae Herba and its breast cancer targets were screened using public databases. Hub genes were identified using the STRING and Metascape database. The R software was utilized for visual analysis of GO and KEGG pathways. The affinity of the hub targets for the active ingredients was assessed by molecular docking analysis, which was verified by experimental assessment. A total of 178 targets were obtained from the 10 active components of Ecliptae Herba, while 3431 targets associated with breast cancer were screened. There were 144 intersecting targets between the components and the disease. Targets with a higher degree, namely EGFR and TGFB1, were identified through the hub subnetwork of PPI. GO and KEGG analyses revealed that Ecliptae Herba plays an important role in multiple cancer therapeutic mechanisms. Moreover, molecular docking results showed that the core components had good binding affinity with key targets. Finally, it was confirmed that TGF-β1 might be a potential crucial target of Ecliptae Herba in the treatment of breast cancer by cytological experiments, and the TGF-β1/Smad signaling pathway might be an important pathway for Ecliptae Herba to exert its therapeutic effects. This study elucidated the active ingredients, key targets, and molecular mechanisms of Ecliptae Herba in the treatment of breast cancer, providing a scientific foundation and therapeutic mechanism for the prevention and treatment of breast cancer with Traditional Chinese medicine.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: