Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

Exploring the Therapeutic Mechanisms of Huzhang-Shanzha Herb Pair against Coronary Heart Disease by Network Pharmacology and Molecular Docking.

  • Dan Li‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2021‎

Coronary heart disease (CHD) seriously affects human health, and its pathogenesis is closely related to atherosclerosis. The Huzhang (the root of Polygonum cuspidatum)-Shanzha (the fruit of Crataegus sp.), a classic herb pair, has been widely used for the treatment of CHD. In recent years, Huzhang-Shanzha herb pair (HSHP) was found to have a wide range of effects in CHD; however, its therapeutic specific mechanisms remain to be further explored. The aim of this study was to elucidate the molecular mechanism of HSHP in the treatment of CHD using a network pharmacology analysis approach.


Network Pharmacology-Based Analysis of the Underlying Mechanism of Hyssopus cuspidatus Boriss. for Antiasthma: A Characteristic Medicinal Material in Xinjiang.

  • Rongchang Liu‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2021‎

Hyssopus cuspidatus Boriss. (Shen Xiang Cao (SXC)), a traditional medicine herb in Xinjiang, has a long history of being used by minorities to treat asthma. However, its active antiasthmatic compounds and underlying mechanism of action are still unknown. The aim of this study was to investigate the bioactive compounds and explore the molecular mechanism of SCX in the treatment of asthma using network pharmacology.


Network Pharmacology and Molecular Docking Suggest the Mechanism for Biological Activity of Rosmarinic Acid.

  • Minglong Guan‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2021‎

Rosmarinic acid (RosA) is a natural phenolic acid compound, which is mainly extracted from Labiatae and Arnebia. At present, there is no systematic analysis of its mechanism. Therefore, we used the method of network pharmacology to analyze the mechanism of RosA. In our study, PubChem database was used to search for the chemical formula and the Chemical Abstracts Service (CAS) number of RosA. Then, the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) was used to evaluate the pharmacodynamics of RosA, and the Comparative Toxicogenomics Database (CTD) was used to identify the potential target genes of RosA. In addition, the Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of target genes were carried out by using the web-based gene set analysis toolkit (WebGestalt). At the same time, we uploaded the targets to the STRING database to obtain the protein interaction network. Then, we carried out a molecular docking about targets and RosA. Finally, we used Cytoscape to establish a visual protein-protein interaction network and drug-target-pathway network and analyze these networks. Our data showed that RosA has good biological activity and drug utilization. There are 55 target genes that have been identified. Then, the bioinformatics analysis and network analysis found that these target genes are closely related to inflammatory response, tumor occurrence and development, and other biological processes. These results demonstrated that RosA can act on a variety of proteins and pathways to form a systematic pharmacological network, which has good value in drug development and utilization.


Exploring the Biological Mechanism of Huang Yam in Treating Tumors and Preventing Antitumor Drug-Induced Cardiotoxicity Using Network Pharmacology and Molecular Docking Technology.

  • Hui Zhang‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2021‎

Drugs for the treatment of tumors could result in cardiotoxicity and cardiovascular diseases. We aimed to explore the anticancer properties of Huang yam as well as its cardioprotective properties using network pharmacology and molecular docking technology. The cardiovascular targets of the major chemical components of Huang yam were obtained from the following databases: TCMSP, ETCM, and BATMAN-TCM. The active ingredients of Huang yam were obtained from SwissADME. The cardiovascular targets of antitumor drugs were obtained using GeneCards, OMIM, DrugBank, DisGeNET, and SwissTargetPrediction databases. The drug-disease intersection genes were used to construct a drug-compound-target network using Cytoscape 3.7.1. A protein-protein interaction network was constructed using Cytoscape's BisoGenet, and the core targets of Huang yam were screened to determine their antitumor properties and identify the cardiovascular targets based on topological parameters. Potential targets were imported into the Metascape platform for GO and KEGG analysis. The results were saved and visualized using R software. The components with higher median values in the network were molecularly docked with the core targets. The network contained 10 compounds, including daucosterol, delusive, dioxin, panthogenin-B, and 124 targets, such as TP53, RPS27A, and UBC. The GO function enrichment analysis showed that there were 478 items in total. KEGG enrichment analysis showed a total of 140 main pathways associated with abnormal transcription of cancer, PI3K-Akt signaling pathway, cell cycle, cancer pathway, ubiquitination-mediated proteolysis, and other pathways. Molecular docking results showed that daucosterol, delusive, dioxin, and panthogenin-B had the highest affinity for TP53, RPS27A, and UBC. The treatment of diseases using traditional Chinese medicine encompasses multiple active ingredients, targets, and pathways. Huang yam has the potential to treat cardiotoxicity caused by antitumor drugs.


Active Ingredients and Potential Mechanisms of the Gan Jiang-Huang Qin-Huang Lian-Ren Shen Decoction against Ulcerative Colitis: A Network Pharmacology and Molecular Docking-Based Study.

  • Ce Zhou‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2021‎

Ulcerative colitis (UC), a chronic and nonspecific inflammatory bowel disease, seriously affects the quality of patients' life. Han Re Bing Yong Fa (treating diseases with both cool- and warm-natured herbs) is a classical therapeutic principle of traditional Chinese medicine (TCM), which is often used to treat chronic diseases, including UC. The Gan Jiang-Huang Qin-Huang Lian-Ren Shen decoction (GJHQHLRSD), a representative of Han Re Bing Yong Fa, is effective in alleviating inflammatory symptoms in UC. However, the pharmacological mechanism underlying its anti-inflammatory effect remains unclear.


A Network Pharmacology Approach to Estimate Potential Targets of the Active Ingredients of Epimedium for Alleviating Mild Cognitive Impairment and Treating Alzheimer's Disease.

  • Xianwei Gao‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2021‎

The present study made use of a network pharmacological approach to evaluate the mechanisms and potential targets of the active ingredients of Epimedium for alleviating mild cognitive impairment (MCI) and treating Alzheimer's disease (AD).


The Core Mechanism of Yiqi Yangjing Decoction Inhibiting Nonsmall-Cell Lung Cancer.

  • Kaiyan Yi‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2022‎

Yiqi Yangjing prescription (YQYJ) is a traditional Chinese medicine prescription used for treating lung cancer. It has a significant effect on enhancing efficacy, reducing toxic symptoms, and improving patients' physical well-being. The effective inhibitory effect on nonsmall-cell lung cancer (NSCLC) has been demonstrated in vitro and in vivo. However, the mechanism of action and the material basis still remain unclear.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: