2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 28,044 papers

Photoinduced hydrogen release from hydrogen boride sheets.

  • Reiya Kawamura‎ et al.
  • Nature communications‎
  • 2019‎

Hydrogen boride nanosheets (HB sheets) are facilely synthesized via ion-exchange treatment on magnesium diboride (MgB2) in an acetonitrile solution. Optical absorption and fluorescence spectra of HB sheets indicate that their bandgap energy is 2.8 eV. According to first-principles calculations, optical absorption seen at 2.8 eV is assigned to the electron transition between the σ-bonding states of B and H orbitals. In addition, density functional theory (DFT) calculations suggest the other allowed transition from the σ-bonding state of B and H orbitals to the antibonding state with the gap of 3.8 eV. Significant gaseous H2 release is found to occur only under photoirradiation, which causes the electron transition from the σ-bonding state to the antibonding state even under mild ambient conditions. The amount of H2 released from the irradiated HB sheets is estimated to be 8 wt%, indicating that the sheets have a high H2-storage capacity compared with previously reported metal H2-storage materials.


The response of Caenorhabditis elegans to hydrogen sulfide and hydrogen cyanide.

  • Mark W Budde‎ et al.
  • Genetics‎
  • 2011‎

Hydrogen sulfide (H2S), an endogenously produced small molecule, protects animals from various stresses. Recent studies demonstrate that animals exposed to H2S are long lived, resistant to hypoxia, and resistant to ischemia-reperfusion injury. We performed a forward genetic screen to gain insights into the molecular mechanisms Caenorhabditis elegans uses to appropriately respond to H2S. At least two distinct pathways appear to be important for this response, including the H2S-oxidation pathway and the hydrogen cyanide (HCN)-assimilation pathway. The H2S-oxidation pathway requires two distinct enzymes important for the oxidation of H2S: the sulfide:quinone reductase sqrd-1 and the dioxygenase ethe-1. The HCN-assimilation pathway requires the cysteine synthase homologs cysl-1 and cysl-2. A low dose of either H2S or HCN can activate hypoxia-inducible factor 1 (HIF-1), which is required for C. elegans to respond to either gas. sqrd-1 and cysl-2 represent the entry points in the H2S-oxidation and HCN-assimilation pathways, respectively, and expression of both of these enzymes is highly induced by HIF-1 in response to both H2S and HCN. In addition to their role in appropriately responding to H2S and HCN, we found that cysl-1 and cysl-2 are both essential mediators of innate immunity against fast paralytic killing by Pseudomonas. Furthermore, in agreement with these data, we showed that growing worms in the presence of H2S is sufficient to confer resistance to Pseudomonas fast paralytic killing. Our results suggest the hypoxia-independent hif-1 response in C. elegans evolved to respond to the naturally occurring small molecules H2S and HCN.


Hydrogen Absorption Reactions of Hydrogen Storage Alloy LaNi5 under High Pressure.

  • Toyoto Sato‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

Hydrogen can be stored in the interstitial sites of the lattices of intermetallic compounds. To date, intermetallic compound LaNi5 or related LaNi5-based alloys are known to be practical hydrogen storage materials owing to their higher volumetric hydrogen densities, making them a compact hydrogen storage method and allowing stable reversible hydrogen absorption and desorption reactions to take place at room temperature below 1.0 MPa. By contrast, gravimetric hydrogen density is required for key improvements (e.g., gravimetric hydrogen density of LaNi5: 1.38 mass%). Although hydrogen storage materials have typically been evaluated for their hydrogen storage properties below 10 MPa, reactions between hydrogen and materials can be facilitated above 1 GPa because the chemical potential of hydrogen dramatically increases at a higher pressure. This indicates that high-pressure experiments above 1 GPa could clarify the latent hydrogen absorption reactions below 10 MPa and potentially explore new hydride phases. In this study, we investigated the hydrogen absorption reaction of LaNi5 above 1 GPa at room temperature to understand their potential hydrogen storage capacities. The high-pressure experiments on LaNi5 with and without an internal hydrogen source (BH3NH3) were performed using a multi-anvil-type high-pressure apparatus, and the reactions were observed using in situ synchrotron radiation X-ray diffraction with an energy dispersive method. The results showed that 2.07 mass% hydrogen was absorbed by LaNi5 at 6 GPa. Considering the unit cell volume expansion, the estimated hydrogen storage capacity could be 1.5 times higher than that obtained from hydrogen absorption reaction below 1.0 MPa at 303 K. Thus, 33% of the available interstitial sites in LaNi5 remained unoccupied by hydrogen atoms under conventional conditions. Although the hydrogen-absorbed LaNi5Hx (x < 9) was maintained below 573 K at 10 GPa, LaNi5Hx began decomposing into NiH, and the formation of a new phase was observed at 873 K and 10 GPa. The new phase was indexed to a hexagonal or trigonal unit cell with a ≈ 4.44 Å and c ≈ 8.44 Å. Further, the newly-formed phase was speculated to be a new hydride phase because the Bragg peak positions and unit cell parameters were inconsistent with those reported for the La-Ni intermetallic compounds and La-Ni hydride phases.


Review of aerosolized hydrogen peroxide, vaporized hydrogen peroxide, and hydrogen peroxide gas plasma in the decontamination of filtering facepiece respirators.

  • Daniel Berger‎ et al.
  • American journal of infection control‎
  • 2022‎

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to over 170?million cases worldwide with over 33.2?million cases and 594,000 deaths in the US alone as of May 31st, 2021. The pandemic has also created severe shortages of personal protective equipment, particularly of filtering facepiece respirators (FFRs). The Centers for Disease Control and Prevention (CDC) has issued recommendations to help conserve FFRs, as well as crisis standards, including four criteria required for decontamination of the traditionally single use respirators. This review is designed to provide an overview of the current literature on vaporized hydrogen peroxide (vHP), hydrogen peroxide gas plasma (HPGP), and aerosolized hydrogen peroxide (aHP) with respect to each of the four CDC decontamination criteria.


Balancing hydrogen adsorption/desorption by orbital modulation for efficient hydrogen evolution catalysis.

  • Feng Li‎ et al.
  • Nature communications‎
  • 2019‎

Hydrogen adsorption/desorption behavior plays a key role in hydrogen evolution reaction (HER) catalysis. The HER reaction rate is a trade-off between hydrogen adsorption and desorption on the catalyst surface. Herein, we report the rational balancing of hydrogen adsorption/desorption by orbital modulation using introduced environmental electronegative carbon/nitrogen (C/N) atoms. Theoretical calculations reveal that the empty d orbitals of iridium (Ir) sites can be reduced by interactions between the environmental electronegative C/N and Ir atoms. This balances the hydrogen adsorption/desorption around the Ir sites, accelerating the related HER process. Remarkably, by anchoring a small amount of Ir nanoparticles (7.16 wt%) in nitrogenated carbon matrixes, the resulting catalyst exhibits significantly enhanced HER performance. This includs the smallest reported overpotential at 10 mA cm-2 (4.5 mV), the highest mass activity at 10 mV (1.12 A mgIr-1) and turnover frequency at 25 mV (4.21 H2 s-1) by far, outperforming Ir nanoparticles and commercial Pt/C.


Hydrogen sulfide protects HUVECs against hydrogen peroxide induced mitochondrial dysfunction and oxidative stress.

  • Ya-Dan Wen‎ et al.
  • PloS one‎
  • 2013‎

Hydrogen sulfide (H₂S) has been shown to have cytoprotective effects in models of hypertension, ischemia/reperfusion and Alzheimer's disease. However, little is known about its effects or mechanisms of action in atherosclerosis. Therefore, in the current study we evaluated the pharmacological effects of H₂S on antioxidant defenses and mitochondria protection against hydrogen peroxide (H₂O₂) induced endothelial cells damage.


Gas diffusion electrodes improve hydrogen gas mass transfer for a hydrogen oxidizing bioanode.

  • Pau Rodenas‎ et al.
  • Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)‎
  • 2017‎

Bioelectrochemical systems (BESs) are capable of recovery of metals at a cathode through oxidation of organic substrate at an anode. Recently, also hydrogen gas was used as an electron donor for recovery of copper in BESs. Oxidation of hydrogen gas produced a current density of 0.8 A m-2 and combined with Cu2+ reduction at the cathode, produced 0.25 W m-2. The main factor limiting current production was the mass transfer of hydrogen to the biofilm due to the low solubility of hydrogen in the anolyte. Here, the mass transfer of hydrogen gas to the bioanode was improved by use of a gas diffusion electrode (GDE).


Hydrogen Sulfide Attenuates Hydrogen Peroxide-Induced Injury in Human Lung Epithelial A549 Cells.

  • Mingqi Wang‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Lung tissues are frequently exposed to a hyperoxia environment, which leads to oxidative stress injuries. Hydrogen sulfide (H2S) is widely implicated in physiological and pathological processes and its antioxidant effect has attracted much attention. Therefore, in this study, we used hydrogen peroxide (H2O2) as an oxidative damage model to investigate the protective mechanism of H2S in lung injury. Cell death induced by H2O2 treatment could be significantly attenuated by the pre-treatment of H2S, resulting in a decrease in the Bax/Bcl-2 ratio and the inhibition of caspase-3 activity in human lung epithelial cell line A549 cells. Additionally, the results showed that H2S decreased reactive oxygen species (ROS), as well as neutralized the damaging effects of H2O2 in mitochondria energy-producing and cell metabolism. Pre-treatment of H2S also decreased H2O2-induced suppression of endogenous H2S production enzymes, cystathionine-beta-synthase (CBS), cystathionine-gamma-lyase (CSE), and 3-mercapto-pyruvate sulfurtransferase (MPST). Furthermore, the administration of H2S attenuated [Ca2+] overload and endoplasmic reticulum (ER) stress through the mitogen-activated protein kinase (MAPK) signaling pathway. Therefore, H2S might be a potential therapeutic agent for reducing ROS and ER stress-associated apoptosis against H2O2-induced lung injury.


Hydrogen bonding sewing interface.

  • Zhenxing Cao‎ et al.
  • RSC advances‎
  • 2020‎

The strong force that originates from breaking covalent bonds can be easily quantified through various testing platforms, while weak interfacial sliding resistance (ISR), originating from hydrogen bonding or van der Waals (vdW) forces, is very challenging to measure. Facilitated by an in-house nanomechanical testing system, we are able to precisely quantify and clearly distinguish the interfacial interactions between individual carbon fibers and several substrates governed by either hydrogen bonding or vdW forces. The specific ISR of the interface dominated by vdW forces is 3.55 ± 0.50 μN mm-1 and it surprisingly increases to 157.86 ± 44.18 μN mm-1 if the interface is bridged by hydrogen bonding. The ad hoc studies demonstrate that hydrogen bonding rather than vdW forces has great potential in sewing the interface if both surfaces are supportive of the formation of hydrogen bonds. The findings will enlighten the engineering of interfacial interactions and further mediate the entire mechanical performance of structures.


Temperature impacts on the growth of hydrogen bubbles during ultrasonic vibration-enhanced hydrogen generation.

  • Hongqian Su‎ et al.
  • Ultrasonics sonochemistry‎
  • 2024‎

To improve the hydrogen precipitation performance on the surface of the catalytic layer of the proton exchange membrane (PEM) hydrogen cathode, ultrasonic vibration was employed to accelerate the detachment of hydrogen bubbles on the surface of the catalytic layer. Based on the energy and mechanical analyses of nano and microbubbles, the hydrogen bubble generation mechanism and the effect of temperature on bubble parameters during the evolution process when the ultrasonic field is coupled with the electric field are investigated. The nucleation frequency of the hydrogen bubbles, the relationship between the pressure and temperature and the operating temperature during the generation and detachment of bubbles as well as the detachment radius of bubbles under the action of the ultrasonic field are obtained. The effects of ultrasound and temperature on hydrogen production were verified by visual experiments. The results show that the operating temperature affects the nucleation, growth, and detachment processes of hydrogen bubbles. The effect of temperature on the nucleation frequency of bubbles mainly comes from the Gibbs free energy required for the electrolysis reaction. The bubble radius and growth rate are both related to the temperature to the power of one-third. Ultrasonic waves enhance the separation of hydrogen bubbles from the catalyst surface by acoustic cavitation and impact effects. An increase in the working temperature reduces the activation energy barriers to be overcome for the electrolysis reaction of water, which together with a decrease in the Gibbs free energy and the surface tension coefficient, leads to an increase in the nucleation frequency of the catalytic layer and a decrease in the radius of bubble detachment, and thus improves the hydrogen precipitation performance. Visualization experiments show that in actual PEM hydrogen production, ultrasonic intensification can promote the formation of nucleation sites. The ultrasonic induced fine bubble flow not only has a drag effect on the bubble, but also intensifies the polymerization growth of the bubble due to the impact of the fine bubble flow, thus speeding up the detachment of the bubble, shortening the covering time of the hydrogen bubble on the surface of the catalytic electrode, reducing the activation voltage loss and improve the hydrogen production efficiency of PEM. The experimental results show that when the electrolyte is 60°C, the maximum hydrogen production efficiency of ultrasound is increased by 7.34%, and the average hydrogen production efficiency is increased by 5.83%.


Determination of Stable Hydrogen Isotopic Composition and Isotope Enrichment Factor at Low Hydrogen Concentration.

  • Xiao Liu‎ et al.
  • Analytical chemistry‎
  • 2023‎

Determination of stable hydrogen isotopic compositions (δ2H) is currently challenged to achieve a high detection limit for reaching the linear range where δ2H values are independent of concentration. Therefore, it is difficult to assess precise δ2H values for calculating the hydrogen isotope enrichment factor (εH) and for field application where the concentrations of contaminants are relatively low. In this study, a data treatment approach was developed to obtain accurate δ2H values below the linear range. The core concept was to use a logarithmic function to fit the δ2H values below the linear range and then adjust the δ2H values below the linear range into the linear range by using the fitted logarithmic equation. Moreover, the adjusted δ2H values were calibrated by using laboratory reference materials, e.g., n-alkanes. Tris(2-chloroethyl) phosphate (TCEP) and hexachlorocyclohexane (HCH) isomers were selected as examples of complex heteroatom-bearing compounds to develop the data treatment approach. This data treatment approach was then tested using δ2H values from a TCEP transformation experiment with OH radicals. Comparable δ2H values and εH between the low-concentration experiment and the reference experiment were obtained using the developed approach. Therefore, the developed data treatment approach enables a possibility of determining the hydrogen isotopic compositions of organic components in low concentrations. It is especially valuable for determining organic contaminants in environmental samples, which are usually present in low concentrations.


Carbon doping switching on the hydrogen adsorption activity of NiO for hydrogen evolution reaction.

  • Tianyi Kou‎ et al.
  • Nature communications‎
  • 2020‎

Hydrogen evolution reaction (HER) is more sluggish in alkaline than in acidic media because of the additional energy required for water dissociation. Numerous catalysts, including NiO, that offer active sites for water dissociation have been extensively investigated. Yet, the overall HER performance of NiO is still limited by lacking favorable H adsorption sites. Here we show a strategy to activate NiO through carbon doping, which creates under-coordinated Ni sites favorable for H adsorption. DFT calculations reveal that carbon dopant decreases the energy barrier of Heyrovsky step from 1.17 eV to 0.81 eV, suggesting the carbon also serves as a hot-spot for the dissociation of water molecules in water-alkali HER. As a result, the carbon doped NiO catalyst achieves an ultralow overpotential of 27 mV at 10 mA cm-2, and a low Tafel slope of 36 mV dec-1, representing the best performance among the state-of-the-art NiO catalysts.


Drinking hydrogen water and intermittent hydrogen gas exposure, but not lactulose or continuous hydrogen gas exposure, prevent 6-hydorxydopamine-induced Parkinson's disease in rats.

  • Mikako Ito‎ et al.
  • Medical gas research‎
  • 2012‎

Lactulose is a synthetic disaccharide that can be catalyzed only by intestinal bacteria in humans and rodents, and a large amount of hydrogen is produced by bacterial catalysis of lactulose. We previously reported marked effects of ad libitum administration of hydrogen water on prevention of a rat model of Parkinson's disease (PD).


Magnesium Hydride-Mediated Sustainable Hydrogen Supply Prolongs the Vase Life of Cut Carnation Flowers via Hydrogen Sulfide.

  • Longna Li‎ et al.
  • Frontiers in plant science‎
  • 2020‎

Magnesium hydride (MgH2) is a promising solid-state hydrogen source with high storage capacity (7.6 wt%). Although it is recently established that MgH2 has potential applications in medicine because it sustainably supplies hydrogen gas (H2), the biological functions of MgH2 in plants have not been observed yet. Also, the slow reaction kinetics restricts its practical applications. In this report, MgH2 (98% purity; 0.5-25 μm size) was firstly used as a hydrogen generation source for postharvest preservation of flowers. Compared with the direct hydrolysis of MgH2 in water, the efficiency of hydrogen production from MgH2 hydrolysis could be greatly improved when the citrate buffer solution is introduced. These results were further confirmed in the flower vase experiment by showing higher efficiency in increasing the production and the residence time of H2 in solution, compared with hydrogen-rich water. Mimicking the response of hydrogen-rich water and sodium hydrosulfide (a hydrogen sulfide donor), subsequent experiments discovered that MgH2-citrate buffer solution not only stimulated hydrogen sulfide (H2S) synthesis but also significantly prolonged the vase life of cut carnation flowers. Meanwhile, redox homeostasis was reestablished, and the increased transcripts of representative senescence-associated genes, including DcbGal and DcGST1, were partly abolished. By contrast, the discussed responses were obviously blocked by the inhibition of endogenous H2S with hypotaurine, an H2S scavenger. These results clearly revealed that MgH2-supplying H2 could prolong the vase life of cut carnation flowers via H2S signaling, and our results, therefore, open a new window for the possible application of hydrogen-releasing materials in agriculture.


Hydrogen sulfide inhibits amyloid formation.

  • Manuel F Rosario-Alomar‎ et al.
  • The journal of physical chemistry. B‎
  • 2015‎

Amyloid fibrils are large aggregates of misfolded proteins, which are often associated with various neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, and vascular dementia. The amount of hydrogen sulfide (H2S) is known to be significantly reduced in the brain tissue of people diagnosed with Alzheimer's disease relative to that of healthy individuals. These findings prompted us to investigate the effects of H2S on the formation of amyloids in vitro using a model fibrillogenic protein hen egg white lysozyme (HEWL). HEWL forms typical β-sheet rich fibrils during the course of 70 min at low pH and high temperatures. The addition of H2S completely inhibits the formation of β-sheet and amyloid fibrils, as revealed by deep UV resonance Raman (DUVRR) spectroscopy and ThT fluorescence. Nonresonance Raman spectroscopy shows that disulfide bonds undergo significant rearrangements in the presence of H2S. Raman bands corresponding to disulfide (RSSR) vibrational modes in the 550-500 cm(-1) spectral range decrease in intensity and are accompanied by the appearance of a new 490 cm(-1) band assigned to the trisulfide group (RSSSR) based on the comparison with model compounds. The formation of RSSSR was proven further using a reaction with TCEP reduction agent and LC-MS analysis of the products. Intrinsic tryptophan fluorescence study shows a strong denaturation of HEWL containing trisulfide bonds. The presented evidence indicates that H2S causes the formation of trisulfide bridges, which destabilizes HEWL structure, preventing protein fibrillation. As a result, small spherical aggregates of unordered protein form, which exhibit no cytotoxicity by contrast with HEWL fibrils.


Photosynthesis in hydrogen-dominated atmospheres.

  • William Bains‎ et al.
  • Life (Basel, Switzerland)‎
  • 2014‎

The diversity of extrasolar planets discovered in the last decade shows that we should not be constrained to look for life in environments similar to early or present-day Earth. Super-Earth exoplanets are being discovered with increasing frequency, and some will be able to retain a stable, hydrogen-dominated atmosphere. We explore the possibilities for photosynthesis on a rocky planet with a thin H2-dominated atmosphere. If a rocky, H2-dominated planet harbors life, then that life is likely to convert atmospheric carbon into methane. Outgassing may also build an atmosphere in which methane is the principal carbon species. We describe the possible chemical routes for photosynthesis starting from methane and show that less energy and lower energy photons could drive CH4-based photosynthesis as compared with CO2-based photosynthesis. We find that a by-product biosignature gas is likely to be H2, which is not distinct from the hydrogen already present in the environment. Ammonia is a potential biosignature gas of hydrogenic photosynthesis that is unlikely to be generated abiologically. We suggest that the evolution of methane-based photosynthesis is at least as likely as the evolution of anoxygenic photosynthesis on Earth and may support the evolution of complex life.


Accurate in vivo real-time determination of the hydrogen concentration in different tissues of mice after hydrogen inhalation.

  • Wenjun Zhu‎ et al.
  • Heliyon‎
  • 2022‎

As an antioxidant, anti-inflammatory and anti-apoptotic agent, hydrogen (H2) shows a promising potential in basic and clinical research against various diseases owing to its safety and efficacy. However, knowledge involving its underlying mechanisms of action, dosage effects, and dose duration remains limited. Previously, the dynamics of H2 concentrations in different tissues of rats after exogenous H2 inhalation had been detected by our team. Here, sequential changes of H2 concentrations in different tissues of another most commonly used experimental rodent mice were monitored in real time with an electrochemical H2 gas sensor during continuous different concentrations of H2 inhalation targeting on five tissues including brain, liver, spleen, kidney, and gastrocnemius. The results showed that the H2 saturation concentrations varied among tissues significantly regardless of the concentration of H2 inhaled, and they were detected the highest in the kidney but the lowest in the gastrocnemius. Meantime, it required a significant longer time to saturate in the thigh muscle. By comparing the H2 saturation concentrations of mice and rats, we found that there were no differences detected in most tissues except the kidney and spleen. Both gas diffusion and bloodstream transport could help the H2 reach to most organs. The results provide data reference for dosage selection, dose duration determination to ensure optimal therapeutic effects of H2 for mice experiments.


In vivo microelectrode monitoring of real-time hydrogen concentration in different tissues of rats after inhaling hydrogen gas.

  • Bo-Yan Liu‎ et al.
  • Medical gas research‎
  • 2022‎

Medical effects of hydrogen have been reported in many studies. Due to difficulties in measuring hydrogen concentration in vivo after intake and high explosive risks of hydrogen, studies about dose-response relationships and tissue concentrations of hydrogen are few. Here, for the first time, we monitored real-time hydrogen concentrations in different tissues in rats including brain, liver, spleen, kidney, thigh muscle, inguinal white adipose tissue, and gonadal white adipose tissue after inhaling different concentrations of hydrogen (4%, 42%, and 67%) using an electrochemical sensor. Hydrogen concentrations in the same tissue showed a dose-dependent response. The equilibrium concentration values were highest in the brain and lowest in the thigh muscle. The saturation and desaturation curves changed more slowly in the thigh muscle and white adipose tissues than in other tissues. These results provide fundamental information for the selection of hydrogen dose applications in basic research and clinical trials. The experiments were approved by the Laboratory Animal Ethics Committee of Shandong First Medical University & Shandong Academy of Medical Sciences (No. 2020-1028) on March 18, 2020.


Capture of carbon dioxide and hydrogen by engineered Escherichia coli: hydrogen-dependent CO2 reduction to formate.

  • Felix Leo‎ et al.
  • Applied microbiology and biotechnology‎
  • 2021‎

In times of global climate change and the fear of dwindling resources, we are facing different considerable challenges such as the replacement of fossil fuel-based energy carriers with the coincident maintenance of the increasing energy supply of our growing world population. Therefore, CO2 capturing and H2 storing solutions are urgently needed. In this study, we demonstrate the production of a functional and biotechnological interesting enzyme complex from acetogenic bacteria, the hydrogen-dependent CO2 reductase (HDCR), in the well-known model organism Escherichia coli. We identified the metabolic bottlenecks of the host organisms for the production of the HDCR enzyme complex. Here we show that the recombinant expression of a heterologous enzyme complex transforms E. coli into a whole-cell biocatalyst for hydrogen-driven CO2 reduction to formate without the need of any external co-factors or endogenous enzymes in the reaction process. This shifts the industrial platform organism E. coli more and more into the focus as biocatalyst for CO2-capturing and H2-storage. KEY POINTS: • A functional HDCR enzyme complex was heterologously produced in E. coli. • The metabolic bottlenecks for HDCR production were identified. • HDCR enabled E. coli cell to capture and store H2 and CO2 in the form of formate.


GenIce: Hydrogen-Disordered Ice Generator.

  • Masakazu Matsumoto‎ et al.
  • Journal of computational chemistry‎
  • 2018‎

GenIce is an efficient and user-friendly tool to generate hydrogen-disordered ice structures. It makes ice and clathrate hydrate structures in various file formats. More than 100 kinds of structures are preset. Users can install their own crystal structures, guest molecules, and file formats as plugins. The algorithm certifies that the generated structures are completely randomized hydrogen-disordered networks obeying the ice rule with zero net polarization. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: