Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 12 papers out of 12 papers

Sulfhydration-associated phosphodiesterase 5A dimerization mediates vasorelaxant effect of hydrogen sulfide.

  • Yan Sun‎ et al.
  • Oncotarget‎
  • 2017‎

The study was designed to examine if the vasorelaxant effect of hydrogen sulfide was mediated by sulfhydration-associated phosphodiesterase (PDE) 5A dimerization. The thoracic aorta of rat was separated and the vasorelaxant effects were examined with in vitro vascular perfusion experiments. The dimerization and sulfhydration of PDE 5A and soluble guanylatecyclase (sGC) were measured. PDE 5A and protein kinase G (PKG) activities were tested. Intracellular cGMP content was detected by enzyme-linked immunosorbent assay (ELISA). The results showed that NaHS relaxed isolated rat vessel rings at an EC50 of (1.79 ± 0.31)×10-5mol/L, associated with significantly increased PKG activity and cGMP content in vascular tissues. Sulfhydration of sGC β1 was increased, while the levels of sGC αβ1 dimers were apparently decreased after incubation with NaHS in vascular tissues. Moreover, PDE 5A homodimers were markedly decreased, and accordingly the PDE 5A activity demonstrated by the content of 5'-GMP was significantly decreased after incubation with NaHS or GYY4137. Mechanistically, both NaHS and GYY4137 significantly enhanced the PDE 5A sulfhydration in vascular tissues. DTT partially abolished the effects of NaHS on PDE 5A activity, cGMP content and vasorelaxation. Therefore, the present study for the first time suggested that H2S exerted vasorelaxant effect probably via sulfhydration-associated PDE 5A dimerization.


Role of hydrogen sulfide in sulfur dioxide production and vascular regulation.

  • Chufan Sun‎ et al.
  • PloS one‎
  • 2022‎

Both hydrogen sulfide (H2S) and sulfur dioxide (SO2) are produced endogenously from the mammalian metabolic pathway of sulfur-containing amino acids and play important roles in several vascular diseases. However, their interaction during the control of vascular function has not been fully clear. Here, we investigated the potential role of H2S in SO2 production and vascular regulation in vivo and in vitro. Wistar rats were divided into the vehicle, SO2, DL-propargylglycine (PPG) + SO2, β-cyano-L-alanine (BCA) + SO2 and sodium hydrosulfide (NaHS) + SO2 groups. SO2 donor was administered with or without pre-administration of PPG, BCA or NaHS for 30 min after blood pressure was stabilized for 1 h, and then, the change in blood pressure was detected by catheterization via the common carotid artery. Rat plasma SO2 and H2S concentrations were measured by high performance liquid chromatography and sensitive sulfur electrode, respectively. The isolated aortic rings were prepared for the measurement of changes in vasorelaxation stimulated by SO2 after PPG, BCA or NaHS pre-incubation. Results showed that the intravenous injection of SO2 donors caused transient hypotension in rats compared with vehicle group. After PPG or BCA pretreatment, the plasma H2S content decreased but the SO2 content increased markedly, and the hypotensive effect of SO2 was significantly enhanced. Conversely, NaHS pretreatment upregulated the plasma H2S content but reduced SO2 content, and attenuated the hypotensive effect of SO2. After PPG or BCA pre-incubation, the vasorelaxation response to SO2 was enhanced significantly. While NaHS pre-administration weakened the SO2-induced relaxation in aortic rings. In conclusion, our in vivo and in vitro data indicate that H2S negatively controls the plasma content of SO2 and the vasorelaxant effect under physiological conditions.


Hydrogen Sulfide Promotes Thyroid Hormone Synthesis and Secretion by Upregulating Sirtuin-1.

  • Xue Zhao‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

Objective: One mechanism of hypothyroidism involves the disruption of thyroid hormone synthesis and secretion by thyrocytes. Hydrogen sulfide (H2S), as a gas signaling molecule, participates in many physiopathologic processes by upregulating sirtuin-1 (SIRT1). The aim of the current study was to explore whether H2S promotes the synthesis and secretion of thyroid hormones by upregulating SIRT1. Methods: Real-time PCR and immunohistochemistry were used to detect the mRNA and protein expression of H2S-generating enzymes in normal human thyroid tissues. Serum H2S concentrations from hypothyroid patients (n = 32) and euthyroid participants (n = 41) were detected by H2S-selective sensors. Thirty-one Sprague-Dawley rats were divided into control group (n = 10), hypothyroid group (induced by MMI, n = 10) and hypothyroid + NaHS group (n = 11), and the FT4, TT4 and TSH levels were assayed. Human primary thyrocytes were incubated with H2S donor sodium hydrosulfide (NaHS) or NaHS plus SIRT1 inhibitor (EX527) in vitro. Thyroid hormone synthesis- and secretion-related proteins [thyroid peroxidase (TPO), sodium iodide transporter (NIS), Pendrin, monocarboxylic acid transporter 8 (MCT8)] were analyzed by real-time PCR and Western blot. Results: H2S levels in serum from hypothyroid patients were decreased compared to those from euthyroid participants (p < .05), and serum H2S levels were positively correlated with FT3, FT4, TT3, and TT4 levels in all subjects (all p < .0001). In vivo, NaHS promoted thyroid function in hypothyroid rats (p < .05). In vitro, H2S was detected in supernatant, and CBS mRNA was higher than CSE and 3-MPST in human primary thyrocytes (p < .05). The protein levels of TPO, NIS, Pendrin and MCT8 were upregulated in a concentration-dependent manner for NaHS in thyrocytes. After blocking SIRT1 with EX527, we found that the increasing levels of TPO, NIS, Pendrin, and MCT8 and TPO activity were downregulated in thyrocytes incubated with NaHS, and FT4 levels in the cell supernatant were also decreased significantly (all p < .05). Conclusion: H2S is mainly generated in thyrocytes by CBS. Serum H2S levels are decreased with hypothyroidism. H2S promotes the synthesis and secretion of thyroid hormones and the expression of related molecules by upregulating SIRT1.


Endogenous Hydrogen Sulfide Persulfidates Caspase-3 at Cysteine 163 to Inhibit Doxorubicin-Induced Cardiomyocyte Apoptosis.

  • Xiaoyun Ye‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2022‎

Doxorubicin (DOX) is an efficient antitumor anthracycline drug, but its cardiotoxicity adversely affects the prognosis of the patients. In this study, we explored whether endogenous gasotransmitter hydrogen sulfide (H2S) could protect against DOX-induced cardiomyocyte apoptosis and its mechanisms. The results indicated that DOX significantly downregulated endogenous H2S production and endogenous synthetase cystathionine γ-lyase (CSE) expression and obviously stimulated the apoptosis in H9C2 cells. The supplement of H2S donor sodium hydrosulfide (NaHS) or overexpression of CSE inhibited DOX-induced H9C2 cell apoptosis. DOX enhanced the activities of caspase family members in cardiomyocytes, while NaHS attenuated DOX-enhanced caspase-3, caspase-2, and caspase-9 activities by 223.1%, 73.94%, and 52.29%, respectively. Therefore, taking caspase-3 as a main target, we demonstrated that NaHS or CSE overexpression alleviated the cleavage of caspase-3, suppressed caspase-3 activity, and inhibited the cleavage of poly ADP-ribose polymerase (PARP). Mechanistically, we found that H2S persulfidated caspase-3 in H9C2 cells and human recombinant caspase-3 protein, while the thiol-reducing agent dithiothreitol (DTT) abolished H2S-induced persulfidation of caspase-3 and thereby prevented the antiapoptotic effect of H2S on caspase-3 in H9C2 cells. The mutation of caspase-3 C148S and C170S failed to block caspase-3 persulfidation by H2S in H9C2 cells. However, caspase-3 C163S mutation successfully abolished the effect of H2S on caspase-3 persulfidation and the corresponding protection of H9C2 cells. Collectively, these findings indicate that endogenous H2S persulfidates caspase-3 at cysteine 163, inhibiting its activity and cardiomyocyte apoptosis. Sufficient endogenous H2S might be necessary for the protection against myocardial cell apoptosis induced by DOX. The results of the study might open new avenues with respect to the therapy of DOX-stimulated cardiomyopathy.


Gut microecology may be involved in pathogenesis of Hashimoto's thyroiditis by reducing production of hydrogen sulfide.

  • Shangqing Zhang‎ et al.
  • The Journal of clinical endocrinology and metabolism‎
  • 2023‎

Hashimoto's thyroiditis (HT) is related to intestinal microbiota alteration, but the causal relationship remains unclear. Hydrogen sulfide (H2S) is a microbiota-derived metabolite. We speculated that abnormal intestinal microbiota might limit H2S production capacity, promoting HT pathogenesis.


Hydrogen sulfide inhibits L-type calcium currents depending upon the protein sulfhydryl state in rat cardiomyocytes.

  • Rongyuan Zhang‎ et al.
  • PloS one‎
  • 2012‎

Hydrogen sulfide (H(2)S) is a novel gasotransmitter that inhibits L-type calcium currents (I (Ca, L)). However, the underlying molecular mechanisms are unclear. In particular, the targeting site in the L-type calcium channel where H(2)S functions remains unknown. The study was designed to investigate if the sulfhydryl group could be the possible targeting site in the L-type calcium channel in rat cardiomyocytes. Cardiac function was measured in isolated perfused rat hearts. The L-type calcium currents were recorded by using a whole cell voltage clamp technique on the isolated cardiomyocytes. The L-type calcium channel containing free sulfhydryl groups in H9C2 cells were measured by using Western blot. The results showed that sodium hydrosulfide (NaHS, an H(2)S donor) produced a negative inotropic effect on cardiac function, which could be partly inhibited by the oxidant sulfhydryl modifier diamide (DM). H(2)S donor inhibited the peak amplitude of I( Ca, L) in a concentration-dependent manner. However, dithiothreitol (DTT), a reducing sulfhydryl modifier markedly reversed the H(2)S donor-induced inhibition of I (Ca, L) in cardiomyocytes. In contrast, in the presence of DM, H(2)S donor could not alter cardiac function and L type calcium currents. After the isolated rat heart or the cardiomyocytes were treated with DTT, NaHS could markedly alter cardiac function and L-type calcium currents in cardiomyocytes. Furthermore, NaHS could decrease the functional free sulfhydryl group in the L-type Ca(2+) channel, which could be reversed by thiol reductant, either DTT or reduced glutathione. Therefore, our results suggest that H(2)S might inhibit L-type calcium currents depending on the sulfhydryl group in rat cardiomyocytes.


Downregulation of Endogenous Hydrogen Sulfide Pathway Is Involved in Mitochondrion-Related Endothelial Cell Apoptosis Induced by High Salt.

  • Yanfang Zong‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2015‎

The study aimed to investigate whether endogenous H2S pathway was involved in high-salt-stimulated mitochondria-related vascular endothelial cell (VEC) apoptosis.


Sulfur dioxide upregulates the inhibited endogenous hydrogen sulfide pathway in rats with pulmonary hypertension induced by high pulmonary blood flow.

  • Liman Luo‎ et al.
  • Biochemical and biophysical research communications‎
  • 2013‎

Pulmonary hypertension (PH) is an important pathophysiological process in the development of many diseases. However, the mechanism responsible for the development of PH remains unknown. The objective of the study was to explore the possible impact of sulfur dioxide (SO2) on the endogenous hydrogen sulfide (H2S) pathway in rats with PH induced by high pulmonary blood flow. Compared with sham group, the systolic pulmonary artery pressure (SPAP) in the shunt group was significantly increased, along with the increased percentage of muscularized arteries and partially muscularized arteries of small pulmonary arteries. Compared with the shunt group, SPAP in the shunt+SO2 group was significantly decreased, and the percentage of muscularized pulmonary arteries was also decreased. Additionally, rats that developed PH had significantly lower levels of SO2 concentration, aspartate aminotransferase (AAT) activity, protein and mRNA expressions of AAT2 in pulmonary tissues. Administration of an SO2 donor could alleviate the elevated pulmonary arterial pressure and decrease the muscularization of pulmonary arteries. At the same time, it increased the H2S production, protein expression of cystathionine-γ-lyase (CSE), mRNA expression of CSE, mercaptopyruvate transsulphurase (MPST) and cystathionine-β-synthase (CBS) in the pulmonary tissue of the rats. The results suggested that endogenous SO2/AAT2 pathway and the endogenous H2S production were downregulated in rats with PH induced by high pulmonary blood flow. However, SO2 could reduce pulmonary arterial pressure and improve the pulmonary vascular pathological changes in association with upregulating endogenous H2S pathway.


Angiotensin II downregulates vascular endothelial cell hydrogen sulfide production by enhancing cystathionine γ-lyase degradation through ROS-activated ubiquitination pathway.

  • Lu Bai‎ et al.
  • Biochemical and biophysical research communications‎
  • 2019‎

The interactions between vasoactive peptides and gasotransmitters have attracted considerable attention from scientists. However, the impact of angiotensin II (AngII) on the endogenous hydrogen sulfide/cystathionine γ-lyase (H2S/CSE) pathway in vascular endothelial cells remains unclear. In this study, we found, for the first time, that AngII downregulated the endogenous H2S/CSE pathway in a time-dependent manner. Mechanistically, AngII accelerated the degradation of the CSE protein and shortened its half-life in endothelial cells. AngII significantly induced Lys48 (K48)-linked CSE ubiquitination and subsequent CSE degradation but did not affect Lys63 (K63)-linked CSE ubiquitination in vascular endothelial cells. Treatment with the proteasome inhibitor MG132 and mutation of Lys48 to Arg in ubiquitin successfully blunted the inhibitory effects of AngII on the endogenous H2S/CSE pathway in vascular endothelial cells. Furthermore, we found that superoxide anion levels were significantly increased in AngII-treated endothelial cells compared with controls and that the ROS scavenger N-acetyl-l-cysteine (NAC) significantly abolished CSE ubiquitination. Taken together, our data suggested that AngII inhibited endogenous H2S generation through ubiquitination-mediated CSE degradation via the ROS pathway in vascular endothelial cells.


Endogenous Hydrogen Sulfide Enhances Carotid Sinus Baroreceptor Sensitivity by Activating the Transient Receptor Potential Cation Channel Subfamily V Member 1 (TRPV1) Channel.

  • Wen Yu‎ et al.
  • Journal of the American Heart Association‎
  • 2017‎

We aimed to investigate the regulatory effects of hydrogen sulfide (H2S) on carotid sinus baroreceptor sensitivity and its mechanisms.


The Increased Endogenous Sulfur Dioxide Acts as a Compensatory Mechanism for the Downregulated Endogenous Hydrogen Sulfide Pathway in the Endothelial Cell Inflammation.

  • Da Zhang‎ et al.
  • Frontiers in immunology‎
  • 2018‎

Endogenous hydrogen sulfide (H2S) and sulfur dioxide (SO2) are regarded as important regulators to control endothelial cell function and protect endothelial cell against various injuries. In our present study, we aimed to investigate the effect of endogenous H2S on the SO2 generation in the endothelial cells and explore its significance in the endothelial inflammation in vitro and in vivo. The human umbilical vein endothelial cell (HUVEC) line (EA.hy926), primary HUVECs, primary rat pulmonary artery endothelial cells (RPAECs), and purified aspartate aminotransferase (AAT) protein from pig heart were used for in vitro experiments. A rat model of monocrotaline (MCT)-induced pulmonary vascular inflammation was used for in vivo experiments. We found that endogenous H2S deficiency caused by cystathionine-γ-lyase (CSE) knockdown increased endogenous SO2 level in endothelial cells and enhanced the enzymatic activity of AAT, a major SO2 synthesis enzyme, without affecting the expressions of AAT1 and AAT2. While H2S donor could reverse the CSE knockdown-induced increase in the endogenous SO2 level and AAT activity. Moreover, H2S donor directly inhibited the activity of purified AAT protein, which was reversed by a thiol reductant DTT. Mechanistically, H2S donor sulfhydrated the purified AAT1/2 protein and rescued the decrease in the sulfhydration of AAT1/2 protein in the CSE knockdown endothelial cells. Furthermore, an AAT inhibitor l-aspartate-β-hydroxamate (HDX), which blocked the upregulation of endogenous SO2/AAT generation induced by CSE knockdown, aggravated CSE knockdown-activated nuclear factor-κB pathway in the endothelial cells and its downstream inflammatory factors including ICAM-1, TNF-α, and IL-6. In in vivo experiment, H2S donor restored the deficiency of endogenous H2S production induced by MCT, and reversed the upregulation of endogenous SO2/AAT pathway via sulfhydrating AAT1 and AAT2. In accordance with the results of the in vitro experiment, HDX exacerbated the pulmonary vascular inflammation induced by the broken endogenous H2S production in MCT-treated rat. In conclusion, for the first time, the present study showed that H2S inhibited endogenous SO2 generation by inactivating AAT via the sulfhydration of AAT1/2; and the increased endogenous SO2 generation might play a compensatory role when H2S/CSE pathway was downregulated, thereby exerting protective effects in endothelial inflammatory responses in vitro and in vivo.


Persulfidation of transcription factor FOXO1 at cysteine 457: A novel mechanism by which H2S inhibits vascular smooth muscle cell proliferation.

  • Xiaoyu Tian‎ et al.
  • Journal of advanced research‎
  • 2021‎

The proliferation of vascular smooth muscle cells (VSMCs) is an important physiological and pathological basis for many cardiovascular diseases. Endogenous hydrogen sulfide (H2S), the third gasotransmitter, is found to preserve vascular structure by inhibiting VSMC proliferation. However, the mechanism by which H2S suppresses VSMC proliferation has not been fully clear.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: