Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

Hydrogen sulfide measurement using sulfide dibimane: critical evaluation with electrospray ion trap mass spectrometry.

  • Xinggui Shen‎ et al.
  • Nitric oxide : biology and chemistry‎
  • 2014‎

Accurate measurement of hydrogen sulfide bioavailability remains a technical challenge due to numerous issues involving sample processing, detection methods used, and actual biochemical products measured. Our group and others have reported that reverse phase HPLC detection of sulfide dibimane (SDB) product from the reaction of H2S/HS(-) with monobromobimane allows for analytical detection of hydrogen sulfide bioavailability in free and other biochemical forms. However, it remains unclear whether possible interfering contaminants may contribute to HPLC SDB peak readings that may result in inaccurate measurements of bioavailable sulfide. In this study, we critically compared hydrogen sulfide dependent SDB detection using reverse phase HPLC (RP-HPLC) versus quantitative SRM electrospray ionization mass spectrometry (ESI/MS) to obtain greater clarity into the validity of the reverse phase HPLC method for analytical measurement of hydrogen sulfide. Using an LCQ-Deca ion-trap mass spectrometer, SDB was identified by ESI/MS positive ion mode, and quantified by selected reaction monitoring (SRM) using hydrocortisone as an internal standard. Collision induced dissociation (CID) parameters were optimized at MS2 level for SDB and hydrocortisone. ESI/MS detection of SDB standard was found to be a log order more sensitive than RP-HPLC with a lower limit of 0.25 nM. Direct comparison of tissue and plasma SDB levels using RP-HPLC and ESI/MS methods revealed comparable sulfide levels in plasma, aorta, heart, lung and brain. Together, these data confirm the use of SDB as valid indicator of H2S bioavailability and highlights differences between analytical detection methods.


Hydrogen sulfide metabolism regulates endothelial solute barrier function.

  • Shuai Yuan‎ et al.
  • Redox biology‎
  • 2016‎

Hydrogen sulfide (H2S) is an important gaseous signaling molecule in the cardiovascular system. In addition to free H2S, H2S can be oxidized to polysulfide which can be biologically active. Since the impact of H2S on endothelial solute barrier function is not known, we sought to determine whether H2S and its various metabolites affect endothelial permeability. In vitro permeability was evaluated using albumin flux and transendothelial electrical resistance. Different H2S donors were used to examine the effects of exogenous H2S. To evaluate the role of endogenous H2S, mouse aortic endothelial cells (MAECs) were isolated from wild type mice and mice lacking cystathionine γ-lyase (CSE), a predominant source of H2S in endothelial cells. In vivo permeability was evaluated using the Miles assay. We observed that polysulfide donors induced rapid albumin flux across endothelium. Comparatively, free sulfide donors increased permeability only with higher concentrations and at later time points. Increased solute permeability was associated with disruption of endothelial junction proteins claudin 5 and VE-cadherin, along with enhanced actin stress fiber formation. Importantly, sulfide donors that increase permeability elicited a preferential increase in polysulfide levels within endothelium. Similarly, CSE deficient MAECs showed enhanced solute barrier function along with reduced endogenous bound sulfane sulfur. CSE siRNA knockdown also enhanced endothelial junction structures with increased claudin 5 protein expression. In vivo, CSE genetic deficiency significantly blunted VEGF induced hyperpermeability revealing an important role of the enzyme for barrier function. In summary, endothelial solute permeability is critically regulated via exogenous and endogenous sulfide bioavailability with a prominent role of polysulfides.


Plasma hydrogen sulfide: A biomarker of Alzheimer's disease and related dementias.

  • Elizabeth Disbrow‎ et al.
  • Alzheimer's & dementia : the journal of the Alzheimer's Association‎
  • 2021‎

While heart disease remains a common cause of mortality, cerebrovascular disease also increases with age, and has been implicated in Alzheimer's disease and related dementias (ADRD). We have described hydrogen sulfide (H2 S), a signaling molecule important in vascular homeostasis, as a biomarker of cardiovascular disease. We hypothesize that plasma H2 S and its metabolites also relate to vascular and cognitive dysfunction in ADRD. We used analytical biochemical methods to measure plasma H2 S metabolites and MRI to evaluate indicators of microvascular disease in ADRD. Levels of total H2 S and specific metabolites were increased in ADRD versus controls. Cognition and microvascular disease indices were correlated with H2 S levels. Total plasma sulfide was the strongest indicator of ADRD, and partially drove the relationship between cognitive dysfunction and white matter lesion volume, an indicator of microvascular disease. Our findings show that H2 S is dysregulated in dementia, providing a potential biomarker for diagnosis and intervention.


Methamphetamine causes cardiovascular dysfunction via cystathionine gamma lyase and hydrogen sulfide depletion.

  • Gopi K Kolluru‎ et al.
  • Redox biology‎
  • 2022‎

Methamphetamine (METH) is an addictive illicit drug used worldwide that causes significant damage to blood vessels resulting in cardiovascular dysfunction. Recent studies highlight increased prevalence of cardiovascular disease (CVD) and associated complications including hypertension, vasospasm, left ventricular hypertrophy, and coronary artery disease in younger populations due to METH use. Here we report that METH administration in a mouse model of 'binge and crash' decreases cardiovascular function via cystathionine gamma lyase (CSE), hydrogen sulfide (H2S), nitric oxide (NO) (CSE/H2S/NO) dependent pathway. METH significantly reduced H2S and NO bioavailability in plasma and skeletal muscle tissues co-incident with a significant reduction in flow-mediated vasodilation (FMD) and blood flow velocity revealing endothelial dysfunction. METH administration also reduced cardiac ejection fraction (EF) and fractional shortening (FS) associated with increased tissue and perivascular fibrosis. Importantly, METH treatment selectively decreased CSE expression and sulfide bioavailability along with reduced eNOS phosphorylation and NO levels. Exogenous sulfide therapy or endothelial CSE transgenic overexpression corrected cardiovascular and associated pathological responses due to METH implicating a central molecular regulatory pathway for tissue pathology. These findings reveal that therapeutic intervention targeting CSE/H2S bioavailability may be useful in attenuating METH mediated cardiovascular disease.


Hydrogen sulfide stimulates xanthine oxidoreductase conversion to nitrite reductase and formation of NO.

  • Sibile Pardue‎ et al.
  • Redox biology‎
  • 2020‎

Cardiovascular disease is the leading cause of death and disability worldwide with increased oxidative stress and reduced NO bioavailability serving as key risk factors. For decades, elevation in protein abundance and enzymatic activity of xanthine oxidoreductase (XOR) under hypoxic/inflammatory conditions has been associated with organ damage and vascular dysfunction. Recent reports have challenged this dogma by identifying a beneficial function for XOR, under similar hypoxic/acidic conditions, whereby XOR catalyzes the reduction of nitrite (NO2-) to nitric oxide (NO) through poorly defined mechanisms. We previously reported that hydrogen sulfide (H2S/sulfide) confers significant vascular benefit under these same conditions via NO2- mediated mechanisms independent of nitric oxide synthase (NOS). Here we report for the first time the convergence of H2S, XOR, and nitrite to form a concerted triad for NO generation. Specifically, hypoxic endothelial cells show a dose-dependent, sulfide and polysulfide (diallyl trisulfide (DATS)-induced, NOS-independent NO2- reduction to NO that is dependent upon the enzymatic activity of XOR. Interestingly, nitrite reduction to NO was found to be slower and more sustained with DATS compared to H2S. Capacity for sulfide/polysulfide to produce an XOR-dependent impact on NO generation translates to salutary actions in vivo as DATS administration in cystathionine-γ-lyase (CSE) knockout mice significantly improved hindlimb ischemia blood flow post ligation, while the XOR-specific inhibitor, febuxostat (Febx), abrogated this benefit. Moreover, flow-mediated vasodilation (FMD) in CSE knockout mice following administration of DATS resulted in greater than 4-fold enhancement in femoral artery dilation while co-treatment with Febx completely completely abrogated this effect. Together, these results identify XOR as a focal point of convergence between sulfide- and nitrite-mediated signaling, as well as affirm the critical need to reexamine current dogma regarding inhibition of XOR in the context of vascular dysfunction.


Decreased bioavailability of hydrogen sulfide links vascular endothelium and atrial remodeling in atrial fibrillation.

  • Megan Watts‎ et al.
  • Redox biology‎
  • 2021‎

Oxidative stress drives the pathogenesis of atrial fibrillation (AF), the most common arrhythmia. In the cardiovascular system, cystathionine γ-lyase (CSE) serves as the primary enzyme producing hydrogen sulfide (H2S), a mammalian gasotransmitter that reduces oxidative stress. Using a case control study design in patients with and without AF and a mouse model of CSE knockout (CSE-KO), we evaluated the role of H2S in the etiology of AF. Patients with AF (n = 51) had significantly reduced plasma acid labile sulfide levels compared to patients without AF (n = 65). In addition, patients with persistent AF (n = 25) showed lower plasma free sulfide levels compared to patients with paroxysmal AF (n = 26). Consistent with an important role for H2S in AF, CSE-KO mice had decreased atrial sulfide levels, increased atrial superoxide levels, and enhanced propensity for induced persistent AF compared to wild type (WT) mice. Rescuing H2S signaling in CSE-KO mice by Diallyl trisulfide (DATS) supplementation or reconstitution with endothelial cell specific CSE over-expression significantly reduced atrial superoxide, increased sulfide levels, and lowered AF inducibility. Lastly, low H2S levels in CSE KO mice was associated with atrial electrical remodeling including longer effective refractory periods, slower conduction velocity, increased myocyte calcium sparks, and increased myocyte action potential duration that were reversed by DATS supplementation or endothelial CSE overexpression. Our findings demonstrate an important role of CSE and H2S bioavailability in regulating electrical remodeling and susceptibility to AF.


Hyperhomocysteinemia potentiates diabetes-impaired EDHF-induced vascular relaxation: Role of insufficient hydrogen sulfide.

  • Zhongjian Cheng‎ et al.
  • Redox biology‎
  • 2018‎

Insufficient hydrogen sulfide (H2S) has been implicated in Type 2 diabetic mellitus (T2DM) and hyperhomocysteinemia (HHcy)-related cardiovascular complications. We investigated the role of H2S in T2DM and HHcy-induced endothelial dysfunction in small mesenteric artery (SMA) of db/db mice fed a high methionine (HM) diet. HM diet (8 weeks) induced HHcy in both T2DM db/db mice and non-diabetic db/+ mice (total plasma Hcy: 48.4 and 31.3 µM, respectively), and aggravated the impaired endothelium-derived hyperpolarization factor (EDHF)-induced endothelium-dependent relaxation to acetylcholine (ACh), determined by the presence of eNOS inhibitor N(ω)-nitro-L-arginine methyl ester (L-NAME) and prostacyclin (PGI2) inhibitor indomethacin (INDO), in SMA from db/db mice but not that from db/+ mice. A non-selective Ca2+-active potassium channel (KCa) opener NS309 rescued T2DM/HHcy-impaired EDHF-mediated vascular relaxation to ACh. EDHF-induced relaxation to ACh was inhibited by a non-selective KCa blocker TEA and intermediate-conductance KCa blocker (IKCa) Tram-34, but not by small-conductance KCa (SKCa) blocker Apamin. HHcy potentiated the reduction of free sulfide, H2S and cystathionine γ-lyase protein, which converts L-cysteine to H2S, in SMA of db/db mice. Importantly, a stable H2S donor DATS diminished the enhanced O2- production in SMAs and lung endothelial cells of T2DM/HHcy mice. Antioxidant PEG-SOD and DATS improved T2DM/HHcy impaired relaxation to ACh. Moreover, HHcy increased hyperglycemia-induced IKCa tyrosine nitration in human micro-vascular endothelial cells. EDHF-induced vascular relaxation to L-cysteine was not altered, whereas such relaxation to NaHS was potentiated by HHcy in SMA of db/db mice which was abolished by ATP-sensitive potassium channel blocker Glycolamide but not by KCa blockers.


The Ataxia telangiectasia-mutated and Rad3-related protein kinase regulates cellular hydrogen sulfide concentrations.

  • Jie Chen‎ et al.
  • DNA repair‎
  • 2019‎

The ataxia telangiectasia-mutated and Rad3-related (ATR) serine/threonine kinase plays a central role in the repair of replication-associated DNA damage, the maintenance of S and G2/M-phase genomic stability, and the promotion of faithful mitotic chromosomal segregation. A number of stimuli activate ATR, including persistent single-stranded DNA at stalled replication folks, R loop formation, hypoxia, ultraviolet light, and oxidative stress, leading to ATR-mediated protein phosphorylation. Recently, hydrogen sulfide (H2S), an endogenous gasotransmitter, has been found to regulate multiple cellular processes through complex redox reactions under similar cell stress environments. Three enzymes synthesize H2S: cystathionine-β-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate sulfurtransferase. Since H2S can under some conditions cause DNA damage, we hypothesized that ATR activity may regulate cellular H2S concentrations and H2S-syntheszing enzymes. Here we show that human colorectal cancer cells carrying biallelic knock-in hypomorphic ATR mutations have lower cellular H2S concentrations than do syngeneic ATR wild-type cells, and all three H2S-synthesizing enzymes show lower protein expression in the ATR hypomorphic mutant cells. Additionally, ATR serine 428 phosphorylation is altered by H2S donor and H2S synthesis enzyme inhibition, while the oxidative-stress induced phosphorylation of the ATR-regulated protein CHK1 on serine 345 is increased by H2S synthesis enzyme inhibition. Lastly, inhibition of H2S production potentiated oxidative stress-induced double-stranded DNA breaks in the ATR hypomorphic mutant compared to ATR wild-type cells. Our findings demonstrate that the ATR kinase regulates and is regulated by H2S.


Role of hydrogen sulfide in early blood-brain barrier disruption following transient focal cerebral ischemia.

  • Zheng Jiang‎ et al.
  • PloS one‎
  • 2015‎

We determined the role of endogenous hydrogen sulfide (H2S) in cerebral vasodilation/hyperemia and early BBB disruption following ischemic stroke. A cranial window was prepared over the left frontal, parietal and temporal cortex in mice. Transient focal cerebral Ischemia was induced by directly ligating the middle cerebral artery (MCA) for two hours. Regional vascular response and cerebral blood flow (CBF) during ischemia and reperfusion were measured in real time. Early BBB disruption was assessed by Evans Blue (EB) and sodium fluorescein (Na-F) extravasation at 3 hours of reperfusion. Topical treatment with DL-propargylglycine (PAG, an inhibitor for cystathionine γ-lyase (CSE)) and aspartate (ASP, inhibitor for cysteine aminotransferase/3-mercaptopyruvate sulfurtransferase (CAT/3-MST)), but not O-(Carboxymethyl)hydroxylamine hemihydrochloride (CHH, an inhibitor for cystathionine β-synthase (CBS)), abolished postischemic cerebral vasodilation/hyperemia and prevented EB and Na-F extravasation. CSE knockout (CSE-/-) reduced postischemic cerebral vasodilation/hyperemia but only inhibited Na-F extravasation. An upregulated CBS was found in cerebral cortex of CSE-/- mice. Topical treatment with CHH didn't further alter postischemic cerebral vasodilation/hyperemia, but prevented EB extravasation in CSE-/- mice. In addition, L-cysteine-induced hydrogen sulfide (H2S) production similarly increased in ischemic side cerebral cortex of control and CSE-/- mice. Our findings suggest that endogenous production of H2S by CSE and CAT/3-MST during reperfusion may be involved in postischemic cerebral vasodilation/hyperemia and play an important role in early BBB disruption following transient focal cerebral ischemia.


Hydrogen sulfide stimulates ischemic vascular remodeling through nitric oxide synthase and nitrite reduction activity regulating hypoxia-inducible factor-1α and vascular endothelial growth factor-dependent angiogenesis.

  • Shyamal C Bir‎ et al.
  • Journal of the American Heart Association‎
  • 2012‎

Hydrogen sulfide (H(2)S) therapy is recognized as a modulator of vascular function during tissue ischemia with the notion of potential interactions of nitric oxide (NO) metabolism. However, little is known about specific biochemical mechanisms or the importance of H(2)S activation of NO metabolism during ischemic tissue vascular remodeling. The goal of this study was to determine the effect of H(2)S on NO metabolism during chronic tissue ischemia and subsequent effects on ischemic vascular remodeling responses.


Sulfide catabolism ameliorates hypoxic brain injury.

  • Eizo Marutani‎ et al.
  • Nature communications‎
  • 2021‎

The mammalian brain is highly vulnerable to oxygen deprivation, yet the mechanism underlying the brain's sensitivity to hypoxia is incompletely understood. Hypoxia induces accumulation of hydrogen sulfide, a gas that inhibits mitochondrial respiration. Here, we show that, in mice, rats, and naturally hypoxia-tolerant ground squirrels, the sensitivity of the brain to hypoxia is inversely related to the levels of sulfide:quinone oxidoreductase (SQOR) and the capacity to catabolize sulfide. Silencing SQOR increased the sensitivity of the brain to hypoxia, whereas neuron-specific SQOR expression prevented hypoxia-induced sulfide accumulation, bioenergetic failure, and ischemic brain injury. Excluding SQOR from mitochondria increased sensitivity to hypoxia not only in the brain but also in heart and liver. Pharmacological scavenging of sulfide maintained mitochondrial respiration in hypoxic neurons and made mice resistant to hypoxia. These results illuminate the critical role of sulfide catabolism in energy homeostasis during hypoxia and identify a therapeutic target for ischemic brain injury.


Dysregulated Sulfide Metabolism in Multiple Sclerosis: Serum and Vascular Endothelial Inflammatory Responses.

  • Pooja Veerareddy‎ et al.
  • Pathophysiology : the official journal of the International Society for Pathophysiology‎
  • 2022‎

Multiple sclerosis (MS) is a leading cause of neurodegenerative disability in younger individuals. When diagnosed early, MS can be managed more effectively, stabilizing clinical symptoms and delaying disease progression. The identification of specific serum biomarkers for early-stage MS could facilitate more successful treatment of this condition. Because MS is an inflammatory disease, we assessed changes in enzymes of the endothelial hydrogen sulfide (H2S) pathway in response to inflammatory cytokines. Blotting analysis was conducted to detect Cystathionine γ-lyase (CSE), Cystathionine beta synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (MST) in human brain microvascular endothelial apical and basolateral microparticles (MPs) and cells following exposure to tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ). CSE was increased in MPs and cells by exposure to TNF-α/IFN-γ; CBS was elevated in apical MPs but not in cells or basolateral MPs; MST was not significantly affected by cytokine exposure. To test how our findings relate to MS patients, we evaluated levels of CSE, CBS, and MST in serum samples from healthy control and MS patients. We found significantly decreased levels of CBS and MST (p = 0.0004, 0.009) in MS serum samples, whereas serum levels of CSE were marginally increased (p = 0.06). These observations support increased CSE and lower CBS and MST expression being associated with the vascular inflammation in MS. These changes in endothelial-derived sulfide enzymes at sites of inflammation in the brain may help to explain sulfide-dependent changes in vascular dysfunction/neuroinflammation underlying MS. These findings further support the use of serum samples to assess enzymatic biomarkers derived from circulating MPs. For example, "liquid biopsy" can be an important tool for allowing early diagnosis of MS, prior to the advanced progression of neurodegeneration associated with this disease.


Sodium sulfide selectively induces oxidative stress, DNA damage, and mitochondrial dysfunction and radiosensitizes glioblastoma (GBM) cells.

  • Adam Y Xiao‎ et al.
  • Redox biology‎
  • 2019‎

Glioblastoma (GBM) has a poor prognosis despite intensive treatment with surgery and chemoradiotherapy. Previous studies using dose-escalated radiotherapy have demonstrated improved survival; however, increased rates of radionecrosis have limited its use. Development of radiosensitizers could improve patient outcome. In the present study, we report the use of sodium sulfide (Na2S), a hydrogen sulfide (H2S) donor, to selectively kill GBM cells (T98G and U87) while sparing normal human cerebral microvascular endothelial cells (hCMEC/D3). Na2S also decreased mitochondrial respiration, increased oxidative stress and induced γH2AX foci and oxidative base damage in GBM cells. Since Na2S did not significantly alter T98G capacity to perform non-homologous end-joining or base excision repair, it is possible that GBM cell killing could be attributed to increased damage induction due to enhanced reactive oxygen species production. Interestingly, Na2S enhanced mitochondrial respiration, produced a more reducing environment and did not induce high levels of DNA damage in hCMEC/D3. Taken together, this data suggests involvement of mitochondrial respiration in Na2S toxicity in GBM cells. The fact that survival of LN-18 GBM cells lacking mitochondrial DNA (ρ0) was not altered by Na2S whereas the survival of LN-18 ρ+ cells was compromised supports this conclusion. When cells were treated with Na2S and photon or proton radiation, GBM cell killing was enhanced, which opens the possibility of H2S being a radiosensitizer. Therefore, this study provides the first evidence that H2S donors could be used in GBM therapy to potentiate radiation-induced killing.


Plasma free H2S levels are elevated in patients with cardiovascular disease.

  • Elvis A Peter‎ et al.
  • Journal of the American Heart Association‎
  • 2013‎

Hydrogen sulfide (H2S) has been implicated in regulating cardiovascular pathophysiology in experimental models. However, there is a paucity of information regarding the levels of H2S in health and cardiovascular disease. In this study we examine the levels of H2S in patients with cardiovascular disease as well as bioavailability of nitric oxide and inflammatory indicators.


Elevated plasma sulfides are associated with cognitive dysfunction and brain atrophy in human Alzheimer's disease and related dementias.

  • Tyler H Reekes‎ et al.
  • Redox biology‎
  • 2023‎

Emerging evidence indicates that vascular stress is an important contributor to the pathophysiology of Alzheimer's disease and related dementias (ADRD). Hydrogen sulfide (H2S) and its metabolites (acid-labile (e.g., iron-sulfur clusters) and bound (e.g., per-, poly-) sulfides) have been shown to modulate both vascular and neuronal homeostasis. We recently reported that elevated plasma sulfides were associated with cognitive dysfunction and measures of microvascular disease in ADRD. Here we extend our previous work to show associations between elevated sulfides and magnetic resonance-based metrics of brain atrophy and white matter integrity. Elevated bound sulfides were associated with decreased grey matter volume, while increased acid labile sulfides were associated with decreased white matter integrity and greater ventricular volume. These findings are consistent with alterations in sulfide metabolism in ADRD which may represent maladaptive responses to oxidative stress.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: