Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 388 papers

Circadian humidity fluctuation induced capillary flow for sustainable mobile energy.

  • Jiayue Tang‎ et al.
  • Nature communications‎
  • 2022‎

Circadian humidity fluctuation is an important factor that affects human life all over the world. Here we show that spherical cap-shaped ionic liquid drops sitting on nanowire array are able to continuously output electricity when exposed to outdoor air, which we attribute to the daily humidity fluctuation induced directional capillary flow. Specifically, ionic liquid drops could absorb/desorb water around the liquid/vapor interface and swell/shrink depending on air humidity fluctuation. While pinning of the drop by nanowire array suppresses advancing/receding of triple-phase contact line. To maintain the surface tension-regulated spherical cap profile, inward/outward flow arises for removing excess fluid from the edge or filling the perimeter with fluid from center. This moisture absorption/desorption-caused capillary flow is confirmed by in-situ microscope imaging. We conduct further research to reveal how environmental humidity affects flow rate and power generation performance. To further illustrate feasibility of our strategy, we combine the generators to light up a red diode and LCD screen. All these results present the great potential of tiny humidity fluctuation as an easily accessible anytime-and-anywhere small-scale green energy resource.


Daily humidity oscillation regulates the circadian clock to influence plant physiology.

  • Musoki Mwimba‎ et al.
  • Nature communications‎
  • 2018‎

Early circadian studies in plants by de Mairan and de Candolle alluded to a regulation of circadian clocks by humidity. However, this regulation has not been described in detail, nor has its influence on physiology been demonstrated. Here we report that, under constant light, circadian humidity oscillation can entrain the plant circadian clock to a period of 24 h probably through the induction of clock genes such as CIRCADIAN CLOCK ASSOCIATED 1. Under simulated natural light and humidity cycles, humidity oscillation increases the amplitude of the circadian clock and further improves plant fitness-related traits. In addition, humidity oscillation enhances effector-triggered immunity at night possibly to counter increased pathogen virulence under high humidity. These results indicate that the humidity oscillation regulates specific circadian outputs besides those co-regulated with the light-dark cycle.


Microbial and metabolic succession on common building materials under high humidity conditions.

  • Simon Lax‎ et al.
  • Nature communications‎
  • 2019‎

Despite considerable efforts to characterize the microbial ecology of the built environment, the metabolic mechanisms underpinning microbial colonization and successional dynamics remain unclear, particularly at high moisture conditions. Here, we applied bacterial/viral particle counting, qPCR, amplicon sequencing of the genes encoding 16S and ITS rRNA, and metabolomics to longitudinally characterize the ecological dynamics of four common building materials maintained at high humidity. We varied the natural inoculum provided to each material and wet half of the samples to simulate a potable water leak. Wetted materials had higher growth rates and lower alpha diversity compared to non-wetted materials, and wetting described the majority of the variance in bacterial, fungal, and metabolite structure. Inoculation location was weakly associated with bacterial and fungal beta diversity. Material type influenced bacterial and viral particle abundance and bacterial and metabolic (but not fungal) diversity. Metabolites indicative of microbial activity were identified, and they too differed by material.


Humidity response in Drosophila olfactory sensory neurons requires the mechanosensitive channel TMEM63.

  • Songling Li‎ et al.
  • Nature communications‎
  • 2022‎

Birds, reptiles and insects have the ability to discriminate humidity levels that influence their survival and geographic distribution. Insects are particularly susceptible to humidity changes due to high surface area to volume ratios, but it remains unclear how humidity sensors transduce humidity signals. Here we identified Or42b-expressing olfactory sensory neurons, which are required for moisture attraction in Drosophila. The sensilla housing Or42b neurons show cuticular deformations upon moist air stimuli, indicating a conversion of humidity into mechanical force. Accordingly, we found Or42b neurons directly respond to humidity changes and rely on the mechanosensitive ion channel TMEM63 to mediate humidity sensing (hygrosensation). Expressing human TMEM63B in Tmem63 mutant flies rescued their defective phenotype in moisture attraction, demonstrating functional conservation. Thus, our results reveal a role of Tmem63 in hygrosensation and support the strategy to detect humidity by transforming it into a mechanical stimulus, which is unique in sensory transduction.


A signal-like role for floral humidity in a nocturnal pollination system.

  • Ajinkya Dahake‎ et al.
  • Nature communications‎
  • 2022‎

Previous studies have considered floral humidity to be an inadvertent consequence of nectar evaporation, which could be exploited as a cue by nectar-seeking pollinators. By contrast, our interdisciplinary study of a night-blooming flower, Datura wrightii, and its hawkmoth pollinator, Manduca sexta, reveals that floral relative humidity acts as a mutually beneficial signal in this system. The distinction between cue- and signal-based functions is illustrated by three experimental findings. First, floral humidity gradients in Datura are nearly ten-fold greater than those reported for other species, and result from active (stomatal conductance) rather than passive (nectar evaporation) processes. These humidity gradients are sustained in the face of wind and are reconstituted within seconds of moth visitation, implying substantial physiological costs to these desert plants. Second, the water balance costs in Datura are compensated through increased visitation by Manduca moths, with concomitant increases in pollen export. We show that moths are innately attracted to humid flowers, even when floral humidity and nectar rewards are experimentally decoupled. Moreover, moths can track minute changes in humidity via antennal hygrosensory sensilla but fail to do so when these sensilla are experimentally occluded. Third, their preference for humid flowers benefits hawkmoths by reducing the energetic costs of flower handling during nectar foraging. Taken together, these findings suggest that floral humidity may function as a signal mediating the final stages of floral choice by hawkmoths, complementing the attractive functions of visual and olfactory signals beyond the floral threshold in this nocturnal plant-pollinator system.


Tunable metasurfaces via the humidity responsive swelling of single-step imprinted polyvinyl alcohol nanostructures.

  • Byoungsu Ko‎ et al.
  • Nature communications‎
  • 2022‎

The application of hydrogels in nanophotonics has been restricted due to their low fabrication feasibility and refractive index. Nevertheless, their elasticity and strength are attractive properties for use in flexible, wearable-devices, and their swelling characteristics in response to the relative humidity highlight their potential for use in tunable nanophotonics. We investigate the use of nanostructured polyvinyl alcohol (PVA) using a one-step nanoimprinting technique for tunable and erasable optical security metasurfaces with multiplexed structural coloration and metaholography. The resolution of the PVA nanoimprinting reaches sub-100 nm, with aspect ratios approaching 10. In response to changes in the relative humidity, the PVA nanostructures swell by up to ~35.5%, providing precise wavefront manipulation of visible light. Here, we demonstrate various highly-secure multiplexed optical encryption metasurfaces to display, hide, or destroy encrypted information based on the relative humidity both irreversibly and reversibly.


Deficiency of a triterpene pathway results in humidity-sensitive genic male sterility in rice.

  • Zheyong Xue‎ et al.
  • Nature communications‎
  • 2018‎

In flowering plants, the pollen coat protects the released male germ cells from desiccation and damage during pollination. However, we know little about the mechanism by which the chemical composition of the pollen coat prevents dehydration of pollen grains. Here we report that deficiency of a grass conserved triterpene synthase, OsOSC12/OsPTS1, in rice leads to failure of pollen coat formation. The mutant plants are male sterile at low relative humidity (RH < 60%), but fully male fertile at high relative humidity (>80%). The lack of three major fatty acids in the pollen coat results in rapid dehydration of pollen grains. We show that applying mixtures of linolenic acid and palmitic acid or stearic acid are able to prevent over-dehydration of mutant pollen grains. We propose that humidity-sensitive genic male sterility (HGMS) could be a desirable trait for hybrid breeding in rice, wheat, maize, and other crops.


Differential CaKAN3-CaHSF8 associations underlie distinct immune and heat responses under high temperature and high humidity conditions.

  • Sheng Yang‎ et al.
  • Nature communications‎
  • 2023‎

High temperature and high humidity (HTHH) conditions increase plant susceptibility to a variety of diseases, including bacterial wilt in solanaceous plants. Some solanaceous plant cultivars have evolved mechanisms to activate HTHH-specific immunity to cope with bacterial wilt disease. However, the underlying mechanisms remain poorly understood. Here we find that CaKAN3 and CaHSF8 upregulate and physically interact with each other in nuclei under HTHH conditions without inoculation or early after inoculation with R. solanacearum in pepper. Consequently, CaKAN3 and CaHSF8 synergistically confer immunity against R. solanacearum via activating a subset of NLRs which initiates immune signaling upon perception of unidentified pathogen effectors. Intriguingly, when HTHH conditions are prolonged without pathogen attack or the temperature goes higher, CaHSF8 no longer interacts with CaKAN3. Instead, it directly upregulates a subset of HSP genes thus activating thermotolerance. Our findings highlight mechanisms controlling context-specific activation of high-temperature-specific pepper immunity and thermotolerance mediated by differential CaKAN3-CaHSF8 associations.


Smart touchless human-machine interaction based on crystalline porous cages.

  • Jinrong Wang‎ et al.
  • Nature communications‎
  • 2024‎

The rise of touchless technology, driven by the recent pandemic, has transformed human-machine interaction (HMI). Projections indicate a substantial growth in the touchless technology market, nearly tripling from $13.6 billion in 2021 to an estimated $37.6 billion by 2026. In response to the pandemic-driven shift towards touchless technology, here we show an organic cage-based humidity sensor with remarkable humidity responsiveness, forming the basis for advanced touchless platforms in potential future HMI systems. This cage sensor boasts an ultrafast response/recovery time (1 s/3 s) and exceptional stability (over 800 cycles) across relative humidity (RH) changes from 11% to 95%. The crystal structure's 3D pore network and luxuriant water-absorbing functional groups both inside and outside of the cage contribute synergistically to superior humidity sensing. Demonstrating versatility, we showcase this cage in smart touchless control screens and touchless password managers, presenting cost-effective and easily processable applications of molecularly porous materials in touchless HMI.


Spatial variation of the rain-snow temperature threshold across the Northern Hemisphere.

  • Keith S Jennings‎ et al.
  • Nature communications‎
  • 2018‎

Despite the importance of precipitation phase to global hydroclimate simulations, many land surface models use spatially uniform air temperature thresholds to partition rain and snow. Here we show, through the analysis of a 29-year observational dataset (n = 17.8 million), that the air temperature at which rain and snow fall in equal frequency varies significantly across the Northern Hemisphere, averaging 1.0 °C and ranging from -0.4 to 2.4 °C for 95% of the stations. Continental climates generally exhibit the warmest rain-snow thresholds and maritime the coolest. Simulations show precipitation phase methods incorporating humidity perform better than air temperature-only methods, particularly at relative humidity values below saturation and air temperatures between 0.6 and 3.4 °C. We also present the first continuous Northern Hemisphere map of rain-snow thresholds, underlining the spatial variability of precipitation phase partitioning. These results suggest precipitation phase could be better predicted using humidity and air temperature in large-scale land surface model runs.


Super hygroscopic nanofibrous membrane-based moisture pump for solar-driven indoor dehumidification.

  • Yufei Zhang‎ et al.
  • Nature communications‎
  • 2020‎

Desiccants play vital roles in dehumidification and atmospheric water harvesting; however, current desiccants have mediocre hygroscopicity, limited recyclability, and high energy consumption. Herein, we report a wood-inspired moisture pump based on electrospun nanofibrous membrane for solar-driven continuous indoor dehumidification. The developed moisture pump with multilayer wood-like cellular networks and interconnected open channels is composed of a desiccant layer and a photothermal layer. The desiccant layer exhibits an unprecedented moisture absorption capacity of 3.01 g g-1 at 90% relative humidity (RH), fast moisture absorption and transport rates, enabling atmospheric water harvesting. The photothermal layer shows a high solar absorption of 93%, efficient solar thermal conversion, and good moisture permeability, thus promoting water evaporation. The moisture pump efficiently reduces the indoor relative humidity to a comfort level (40‒60% RH) under one-sun illumination. This work opens the way to develop new-generation, high-performance nanofibrous membrane-based desiccants for energy-efficient humidity control and atmospheric water harvesting.


Hygroscopic compounds in spider aggregate glue remove interfacial water to maintain adhesion in humid conditions.

  • Saranshu Singla‎ et al.
  • Nature communications‎
  • 2018‎

Adhesion in humid environments is fundamentally challenging because of the presence of interfacial bound water. Spiders often hunt in wet habitats and overcome this challenge using sticky aggregate glue droplets whose adhesion is resistant to interfacial failure under humid conditions. The mechanism by which spider aggregate glue avoids interfacial failure in humid environments is still unknown. Here, we investigate the mechanism of aggregate glue adhesion by using interface-sensitive spectroscopy in conjunction with infrared spectroscopy. We demonstrate that glycoproteins act as primary binding agents at the interface. As humidity increases, we observe reversible changes in the interfacial secondary structure of glycoproteins. Surprisingly, we do not observe liquid-like water at the interface, even though liquid-like water increases inside the bulk with increasing humidity. We hypothesize that the hygroscopic compounds in aggregate glue sequester interfacial water. Using hygroscopic compounds to sequester interfacial water provides a novel design principle for developing water-resistant synthetic adhesives.


Tunable afterglow for mechanical self-monitoring 3D printing structures.

  • Rongjuan Huang‎ et al.
  • Nature communications‎
  • 2024‎

Self-monitoring materials have promising applications in structural health monitoring. However, developing organic afterglow materials for self-monitoring is a highly intriguing yet challenging task. Herein, we design two organic molecules with a twisted donor-acceptor-acceptor' configuration and achieve dual-emissive afterglow with tunable lifetimes (86.1-287.7 ms) by doping into various matrices. Based on a photosensitive resin, a series of complex structures are prepared using 3D printing technology. They exhibit tunable afterglow lifetime and Young's Modulus by manipulating the photocuring time and humidity level. With sufficient photocuring or in dry conditions, a long-lived bright green afterglow without apparent deformation under external loading is realized. We demonstrate that the mechanical properties of complex 3D printing structures can be well monitored by controlling the photocuring time and humidity, and quantitively manifested by afterglow lifetimes. This work casts opportunities for constructing flexible 3D printing devices that can achieve sensing and real-time mechanical detection.


Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and essential for excitatory synapse nanoscale organization in the hippocampus.

  • Brian A Lloyd‎ et al.
  • Nature communications‎
  • 2023‎

Proteins critical for synaptic transmission are non-uniformly distributed and assembled into regions of high density called subsynaptic densities (SSDs) that transsynaptically align in nanocolumns. Neurexin-1 and neurexin-3 are essential presynaptic adhesion molecules that non-redundantly control NMDAR- and AMPAR-mediated synaptic transmission, respectively, via transsynaptic interactions with distinct postsynaptic ligands. Despite their functional relevance, fundamental questions regarding the nanoscale properties of individual neurexins, their influence on the subsynaptic organization of excitatory synapses and the mechanisms controlling how individual neurexins engage in precise transsynaptic interactions are unknown. Using Double Helix 3D dSTORM and neurexin mouse models, we identify neurexin-3 as a critical presynaptic adhesion molecule that regulates excitatory synapse nano-organization in hippocampus. Furthermore, endogenous neurexin-1 and neurexin-3 form discrete and non-overlapping SSDs that are enriched opposite their postsynaptic ligands. Thus, the nanoscale organization of neurexin-1 and neurexin-3 may explain how individual neurexins signal in parallel to govern different synaptic properties.


Structure of SARS-CoV-2 membrane protein essential for virus assembly.

  • Zhikuan Zhang‎ et al.
  • Nature communications‎
  • 2022‎

The coronavirus membrane protein (M) is the most abundant viral structural protein and plays a central role in virus assembly and morphogenesis. However, the process of M protein-driven virus assembly are largely unknown. Here, we report the cryo-electron microscopy structure of the SARS-CoV-2 M protein in two different conformations. M protein forms a mushroom-shaped dimer, composed of two transmembrane domain-swapped three-helix bundles and two intravirion domains. M protein further assembles into higher-order oligomers. A highly conserved hinge region is key for conformational changes. The M protein dimer is unexpectedly similar to SARS-CoV-2 ORF3a, a viral ion channel. Moreover, the interaction analyses of M protein with nucleocapsid protein (N) and RNA suggest that the M protein mediates the concerted recruitment of these components through the positively charged intravirion domain. Our data shed light on the M protein-driven virus assembly mechanism and provide a structural basis for therapeutic intervention targeting M protein.


Fast sulfate formation from oxidation of SO2 by NO2 and HONO observed in Beijing haze.

  • Junfeng Wang‎ et al.
  • Nature communications‎
  • 2020‎

Severe events of wintertime particulate air pollution in Beijing (winter haze) are associated with high relative humidity (RH) and fast production of particulate sulfate from the oxidation of sulfur dioxide (SO2) emitted by coal combustion. There has been considerable debate regarding the mechanism for SO2 oxidation. Here we show evidence from field observations of a haze event that rapid oxidation of SO2 by nitrogen dioxide (NO2) and nitrous acid (HONO) takes place, the latter producing nitrous oxide (N2O). Sulfate shifts to larger particle sizes during the event, indicative of fog/cloud processing. Fog and cloud readily form under winter haze conditions, leading to high liquid water contents with high pH (>5.5) from elevated ammonia. Such conditions enable fast aqueous-phase oxidation of SO2 by NO2, producing HONO which can in turn oxidize SO2 to yield N2O.This mechanism could provide an explanation for sulfate formation under some winter haze conditions.


Ultra-durable cell-free bioactive hydrogel with fast shape memory and on-demand drug release for cartilage regeneration.

  • Yuxuan Yang‎ et al.
  • Nature communications‎
  • 2023‎

Osteoarthritis is a worldwide prevalent disease that imposes a significant socioeconomic burden on individuals and healthcare systems. Achieving cartilage regeneration in patients with osteoarthritis remains challenging clinically. In this work, we construct a multiple hydrogen-bond crosslinked hydrogel loaded with tannic acid and Kartogenin by polyaddition reaction as a cell-free scaffold for in vivo cartilage regeneration, which features ultra-durable mechanical properties and stage-dependent drug release behavior. We demonstrate that the hydrogel can withstand 28000 loading-unloading mechanical cycles and exhibits fast shape memory at body temperature (30 s) with the potential for minimally invasive surgery. We find that the hydrogel can also alleviate the inflammatory reaction and regulate oxidative stress in situ to establish a microenvironment conducive to healing. We show that the sequential release of tannic acid and Kartogenin can promote the migration of bone marrow mesenchymal stem cells into the hydrogel scaffold, followed by the induction of chondrocyte differentiation, thus leading to full-thickness cartilage regeneration in vivo. This work may provide a promising solution to address the problem of cartilage regeneration.


Climate change favours large seasonal loss of Arctic ozone.

  • Peter von der Gathen‎ et al.
  • Nature communications‎
  • 2021‎

Chemical loss of Arctic ozone due to anthropogenic halogens is driven by temperature, with more loss occurring during cold winters favourable for formation of polar stratospheric clouds (PSCs). We show that a positive, statistically significant rise in the local maxima of PSC formation potential (PFPLM) for cold winters is apparent in meteorological data collected over the past half century. Output from numerous General Circulation Models (GCMs) also exhibits positive trends in PFPLM over 1950 to 2100, with highest values occurring at end of century, for simulations driven by a large rise in the radiative forcing of climate from greenhouse gases (GHGs). We combine projections of stratospheric halogen loading and humidity with GCM-based forecasts of temperature to suggest that conditions favourable for large, seasonal loss of Arctic column O3 could persist or even worsen until the end of this century, if future abundances of GHGs continue to steeply rise.


Switchable unidirectional emissions from hydrogel gratings with integrated carbon quantum dots.

  • Chenjie Dai‎ et al.
  • Nature communications‎
  • 2024‎

Directional emission of photoluminescence despite its incoherence is an attractive technique for light-emitting fields and nanophotonics. Optical metasurfaces provide a promising route for wavefront engineering at the subwavelength scale, enabling the feasibility of unidirectional emission. However, current directional emission strategies are mostly based on static metasurfaces, and it remains a challenge to achieve unidirectional emissions tuning with high performance. Here, we demonstrate quantum dots-hydrogel integrated gratings for actively switchable unidirectional emission with simultaneously a narrow divergence angle less than 1.5° and a large diffraction angle greater than 45°. We further demonstrate that the grating efficiency alteration leads to a more than 7-fold tuning of emission intensity at diffraction order due to the variation of hydrogel morphology subject to change in ambient humidity. Our proposed switchable emission strategy can promote technologies of active light-emitting devices for radiation control and optical imaging.


Silicon as a ubiquitous contaminant in graphene derivatives with significant impact on device performance.

  • Rouhollah Jalili‎ et al.
  • Nature communications‎
  • 2018‎

Silicon-based impurities are ubiquitous in natural graphite. However, their role as a contaminant in exfoliated graphene and their influence on devices have been overlooked. Herein atomic resolution microscopy is used to highlight the existence of silicon-based contamination on various solution-processed graphene. We found these impurities are extremely persistent and thus utilising high purity graphite as a precursor is the only route to produce silicon-free graphene. These impurities are found to hamper the effective utilisation of graphene in whereby surface area is of paramount importance. When non-contaminated graphene is used to fabricate supercapacitor microelectrodes, a capacitance value closest to the predicted theoretical capacitance for graphene is obtained. We also demonstrate a versatile humidity sensor made from pure graphene oxide which achieves the highest sensitivity and the lowest limit of detection ever reported. Our findings constitute a vital milestone to achieve commercially viable and high performance graphene-based devices.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: