2024MAY02: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

Memantine Protects From Exacerbation of Ischemic Stroke and Blood Brain Barrier Disruption in Mild But Not Severe Hyperhomocysteinemia.

  • Sean X Gu‎ et al.
  • Journal of the American Heart Association‎
  • 2020‎

Background Hyperhomocysteinemia is a risk factor for ischemic stroke; however, a targeted treatment strategy is lacking partly because of limited understanding of the causal role of homocysteine in cerebrovascular pathogenesis. Methods and Results In a genetic model of cystathionine beta synthase (CBS) deficiency, we tested the hypothesis that elevation in plasma total homocysteine exacerbates cerebrovascular injury and that memantine, a N-methyl-D-aspartate receptor antagonist, is protective. Mild or severe elevation in plasma total homocysteine was observed in Cbs+/- (6.1±0.3 μmol/L) or Cbs-/- (309±18 μmol/L) mice versus Cbs+/+ (3.1±0.6 μmol/L) mice. Surprisingly, Cbs-/- and Cbs+/- mice exhibited similar increases in cerebral infarct size following middle cerebral artery ischemia/reperfusion injury, despite the much higher total homocysteine levels in Cbs-/- mice. Likewise, disruption of the blood brain barrier was observed in both Cbs+/- and Cbs-/- mice. Administration of the N-methyl-D-aspartate receptor antagonist memantine protected Cbs+/- but not Cbs-/- mice from cerebral infarction and blood brain barrier disruption. Our data suggest that the differential effect of memantine in Cbs+/- versus Cbs-/- mice may be related to changes in expression of N-methyl-D-aspartate receptor subunits. Cbs-/-, but not Cbs+/- mice had increased expression of NR2B subunit, which is known to be relatively insensitive to homocysteine. Conclusions These data provide experimental evidence that even a mild increase in plasma total homocysteine can exacerbate cerebrovascular injury and suggest that N-methyl-D-aspartate receptor antagonism may represent a strategy to prevent reperfusion injury after acute ischemic stroke in patients with mild hyperhomocysteinemia.


Pharmacokinetics and pharmacodynamics of PEGylated truncated human cystathionine beta-synthase for treatment of homocystinuria.

  • Tomas Majtan‎ et al.
  • Life sciences‎
  • 2018‎

PEGylated human truncated cystathionine beta-synthase, lacking the C-terminal regulatory domain (PEG-CBS), is a promising preclinical candidate for enzyme replacement therapy in homocystinuria (HCU). It was designed to function as a metabolic sink to decrease the severely elevated plasma and tissue homocysteine concentrations. In this communication, we evaluated pharmacokinetics (PK), pharmacodynamics (PD) and sub-chronic toxicity of PEG-CBS in homocystinuric mice, wild type rats and monkeys to estimate the minimum human efficacious dose for clinical trials.


Revisiting One-Carbon Metabolites in Human Breast Milk: Focus on S-Adenosylmethionine.

  • Carles Lerin‎ et al.
  • Nutrients‎
  • 2023‎

Breastfeeding is the gold standard for early nutrition. Metabolites from the one-carbon metabolism pool are crucial for infant development. The aim of this study is to compare the breast-milk one-carbon metabolic profile to other biofluids where these metabolites are present, including cord and adult blood plasma as well as cerebrospinal fluid. Breast milk (n = 142), cord blood plasma (n = 23), maternal plasma (n = 28), aging adult plasma (n = 91), cerebrospinal fluid (n = 92), and infant milk formula (n = 11) samples were analyzed by LC-MS/MS to quantify choline, betaine, methionine, S-adenosylmethionine, S-adenosylhomocysteine, total homocysteine, and cystathionine. Differences between groups were visualized by principal component analysis and analyzed by Kruskal-Wallis test. Correlation analysis was performed between one-carbon metabolites in human breast milk. Principal component analysis based on these metabolites separated breast milk samples from other biofluids. The S-adenosylmethionine (SAM) concentration was significantly higher in breast milk compared to the other biofluids and was absent in infant milk formulas. Despite many significant correlations between metabolites in one-carbon metabolism, there were no significant correlations between SAM and methionine or total homocysteine. Together, our data indicate a high concentration of SAM in breast milk, which may suggest a strong demand for this metabolite during infant early growth while its absence in infant milk formulas may indicate the inadequacy of this vital metabolic nutrient.


Altered protein phosphatase 2A methylation and Tau phosphorylation in the young and aged brain of methylenetetrahydrofolate reductase (MTHFR) deficient mice.

  • Jean-Marie Sontag‎ et al.
  • Frontiers in aging neuroscience‎
  • 2014‎

Common functional polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) gene, a key enzyme in folate and homocysteine metabolism, influence risk for a variety of complex disorders, including developmental, vascular, and neurological diseases. MTHFR deficiency is associated with elevation of homocysteine levels and alterations in the methylation cycle. Here, using young and aged Mthfr knockout mouse models, we show that mild MTHFR deficiency can lead to brain-region specific impairment of the methylation of Ser/Thr protein phosphatase 2A (PP2A). Relative to wild-type controls, decreased expression levels of PP2A and leucine carboxyl methyltransferase (LCMT1) were primarily observed in the hippocampus and cerebellum, and to a lesser extent in the cortex of young null Mthfr (-/-) and aged heterozygous Mthfr (+/-) mice. A marked down regulation of LCMT1 correlated with the loss of PP2A/Bα holoenzymes. Dietary folate deficiency significantly decreased LCMT1, methylated PP2A and PP2A/Bα levels in all brain regions examined from aged Mthfr (+/+) mice, and further exacerbated the regional effects of MTHFR deficiency in aged Mthfr (+/-) mice. In turn, the down regulation of PP2A/Bα was associated with enhanced phosphorylation of Tau, a neuropathological hallmark of Alzheimer's disease (AD). Our findings identify hypomethylation of PP2A enzymes, which are major CNS phosphatases, as a novel mechanism by which MTHFR deficiency and Mthfr gene-diet interactions could lead to disruption of neuronal homeostasis, and increase the risk for a variety of neuropsychiatric disorders, including age-related diseases like sporadic AD.


One-carbon metabolism supplementation improves outcome after stroke in aged male MTHFR-deficient mice.

  • Nafisa M Jadavji‎ et al.
  • Neurobiology of disease‎
  • 2019‎

The prevalence of stroke increases with age and the ability to absorb all nutrients from our diets decreases with age. Nutrition is a modifiable risk factor for stroke, which is a leading cause of death and disability in world-wide. Deficiencies in one‑carbon metabolism, including in methyltetrahydrofolate reductase (MTHFR), have been linked to increased risk of stroke. The Mthfr+/- mice mouse model mimic the phenotype of the MTHFR677C➔T polymorphism, such as elevated levels of homocystine. Using this mouse model, the aim of this study was to investigate the impact of dietary supplementation with 5-methylTHF, vitamin B12, and choline after ischemic stroke. Male Mthfr+/- and wildtype littermate control mice were aged (~1.5-year-old) and were placed on control diet (CD) 4-weeks prior to sensorimotor cortex damage using photothrombosis (PT), a model for ischemic stroke. Post-operatively, one group of Mthfr+/- and wildtype littermate mice were placed on 5-methylTHF, vitamin B12, and choline supplemented diet (SD). Four weeks after PT and SD motor function was assessed using the accelerating rotarod, forepaw asymmetry, and ladder beam walking tasks. Total homocysteine and cysteine levels were measured in blood. Brain tissue was processed to assess lesion volume and investigate biochemical and molecular changes. After PT and SD, Mthfr+/- mice were able to stay on the accelerating rotarod longer and used their impaired forepaw to explore more when compared to CD animals. Furthermore, total homocysteine levels in plasma and lesion volume were reduced in Mthfr+/+ and Mthfr+/- SD mice. Within the damage site, there were reduced levels of apoptotic cell death and increased neuroprotective cellular response in the brains of SD treated Mthfr+/- mice. This study reveals a critical role for one‑carbon supplementation, with 5-methylTHF, vitamin B12, and choline, in supporting improvement after ischemic stroke damage.


Hyperhomocysteinemia potentiates hyperglycemia-induced inflammatory monocyte differentiation and atherosclerosis.

  • Pu Fang‎ et al.
  • Diabetes‎
  • 2014‎

Hyperhomocysteinemia (HHcy) is associated with increased diabetic cardiovascular diseases. However, the role of HHcy in atherogenesis associated with hyperglycemia (HG) remains unknown. To examine the role and mechanisms by which HHcy accelerates HG-induced atherosclerosis, we established an atherosclerosis-susceptible HHcy and HG mouse model. HHcy was established in mice deficient in cystathionine β-synthase (Cbs) in which the homocysteine (Hcy) level could be lowered by inducing transgenic human CBS (Tg-hCBS) using Zn supplementation. HG was induced by streptozotocin injection. Atherosclerosis was induced by crossing Tg-hCBS Cbs mice with apolipoprotein E-deficient (ApoE(-/-)) mice and feeding them a high-fat diet for 2 weeks. We demonstrated that HHcy and HG accelerated atherosclerosis and increased lesion monocytes (MCs) and macrophages (MØs) and further increased inflammatory MC and MØ levels in peripheral tissues. Furthermore, Hcy-lowering reversed circulating mononuclear cells, MC, and inflammatory MC and MC-derived MØ levels. In addition, inflammatory MC correlated positively with plasma Hcy levels and negatively with plasma s-adenosylmethionine-to-s-adenosylhomocysteine ratios. Finally, l-Hcy and d-glucose promoted inflammatory MC differentiation in primary mouse splenocytes, which was reversed by adenoviral DNA methyltransferase-1. HHcy and HG, individually and synergistically, accelerated atherosclerosis and inflammatory MC and MØ differentiation, at least in part, via DNA hypomethylation.


Deficiency of superoxide dismutase promotes cerebral vascular hypertrophy and vascular dysfunction in hyperhomocysteinemia.

  • Sanjana Dayal‎ et al.
  • PloS one‎
  • 2017‎

There is an emerging consensus that hyperhomocysteinemia is an independent risk factor for cerebral vascular disease and that homocysteine-lowering therapy protects from ischemic stroke. However, the mechanisms by which hyperhomocysteinemia produces abnormalities of cerebral vascular structure and function remain largely undefined. Our objective in this study was to define the mechanistic role of superoxide in hyperhomocysteinemia-induced cerebral vascular dysfunction and hypertrophy. Unlike previous studies, our experimental design included a genetic approach to alter superoxide levels by using superoxide dismutase 1 (SOD1)-deficient mice fed a high methionine/low folate diet to produce hyperhomocysteinemia. In wild-type mice, the hyperhomocysteinemic diet caused elevated superoxide levels and impaired responses to endothelium-dependent vasodilators in cerebral arterioles, and SOD1 deficiency compounded the severity of these effects. The cross-sectional area of the pial arteriolar wall was markedly increased in mice with SOD1 deficiency, and the hyperhomocysteinemic diet sensitized SOD1-deficient mice to this hypertrophic effect. Analysis of individual components of the vascular wall demonstrated a significant increase in the content of smooth muscle and elastin. We conclude that superoxide is a key driver of both cerebral vascular hypertrophy and vasomotor dysfunction in this model of dietary hyperhomocysteinemia. These findings provide insight into the mechanisms by which hyperhomocysteinemia promotes cerebral vascular disease and ischemic stroke.


Protective vascular and cardiac effects of inducible nitric oxide synthase in mice with hyperhomocysteinemia.

  • Sanjana Dayal‎ et al.
  • PloS one‎
  • 2014‎

Diet-induced hyperhomocysteinemia produces endothelial and cardiac dysfunction and promotes thrombosis through a mechanism proposed to involve oxidative stress. Inducible nitric oxide synthase (iNOS) is upregulated in hyperhomocysteinemia and can generate superoxide. We therefore tested the hypothesis that iNOS mediates the adverse oxidative, vascular, thrombotic, and cardiac effects of hyperhomocysteinemia. Mice deficient in iNOS (Nos2-/-) and their wild-type (Nos2+/+) littermates were fed a high methionine/low folate (HM/LF) diet to induce mild hyperhomocysteinemia, with a 2-fold increase in plasma total homocysteine (P<0.001 vs. control diet). Hyperhomocysteinemic Nos2+/+ mice exhibited endothelial dysfunction in cerebral arterioles, with impaired dilatation to acetylcholine but not nitroprusside, and enhanced susceptibility to carotid artery thrombosis, with shortened times to occlusion following photochemical injury (P<0.05 vs. control diet). Nos2-/- mice had decreased rather than increased dilatation responses to acetylcholine (P<0.05 vs. Nos2+/+ mice). Nos2-/- mice fed control diet also exhibited shortened times to thrombotic occlusion (P<0.05 vs. Nos2+/+ mice), and iNOS deficiency failed to protect from endothelial dysfunction or accelerated thrombosis in mice with hyperhomocysteinemia. Deficiency of iNOS did not alter myocardial infarct size in mice fed the control diet but significantly increased infarct size and cardiac superoxide production in mice fed the HM/LF diet (P<0.05 vs. Nos2+/+ mice). These findings suggest that endogenous iNOS protects from, rather than exacerbates, endothelial dysfunction, thrombosis, and hyperhomocysteinemia-associated myocardial ischemia-reperfusion injury. In the setting of mild hyperhomocysteinemia, iNOS functions to blunt cardiac oxidative stress rather than functioning as a source of superoxide.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: