Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 24 papers

Covalent Inhibition of the Histamine H3 Receptor.

  • Gábor Wágner‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

Covalent binding of G protein-coupled receptors by small molecules is a useful approach for better understanding of the structure and function of these proteins. We designed, synthesized and characterized a series of 6 potential covalent ligands for the histamine H3 receptor (H3R). Starting from a 2-amino-pyrimidine scaffold, optimization of anchor moiety and warhead followed by fine-tuning of the required reactivity via scaffold hopping resulted in the isothiocyanate H3R ligand 44. It shows high reactivity toward glutathione combined with appropriate stability in water and reacts selectively with the cysteine sidechain in a model nonapeptide equipped with nucleophilic residues. The covalent interaction of 44 with H3R was validated with washout experiments and leads to inverse agonism on H3R. Irreversible binder 44 (VUF15662) may serve as a useful tool compound to stabilize the inactive H3R conformation and to study the consequences of prolonged inhibition of the H3R.


Molecular and biochemical pharmacology of the histamine H4 receptor.

  • Rob Leurs‎ et al.
  • British journal of pharmacology‎
  • 2009‎

The elucidation of the human genome has had a major impact on histamine receptor research. The identification of the human H4 receptor by several groups has been instrumental for a new appreciation of the role of histamine in the modulation of immune function. In this review, we summarize the historical developments and the molecular and biochemical pharmacology of the H4 receptor.


Identification of TSPAN4 as Novel Histamine H4 Receptor Interactor.

  • Xiaoyuan Ma‎ et al.
  • Biomolecules‎
  • 2021‎

The histamine H4 receptor (H4R) is a G protein-coupled receptor that is predominantly expressed on immune cells and considered to be an important drug target for various inflammatory disorders. Like most GPCRs, the H4R activates G proteins and recruits β-arrestins upon phosphorylation by GPCR kinases to induce cellular signaling in response to agonist stimulation. However, in the last decade, novel GPCR-interacting proteins have been identified that may regulate GPCR functioning. In this study, a split-ubiquitin membrane yeast two-hybrid assay was used to identify H4R interactors in a Jurkat T cell line cDNA library. Forty-three novel H4R interactors were identified, of which 17 have also been previously observed in MYTH screens to interact with other GPCR subtypes. The interaction of H4R with the tetraspanin TSPAN4 was confirmed in transfected cells using bioluminescence resonance energy transfer, bimolecular fluorescence complementation, and co-immunoprecipitation. Histamine stimulation reduced the interaction between H4R and TSPAN4, but TSPAN4 did not affect H4R-mediated G protein signaling. Nonetheless, the identification of novel GPCR interactors by MYTH is a starting point to further investigate the regulation of GPCR signaling.


Analysis of Missense Variants in the Human Histamine Receptor Family Reveals Increased Constitutive Activity of E4106.30×30K Variant in the Histamine H1 Receptor.

  • Xiaoyuan Ma‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

The Exome Aggregation Consortium has collected the protein-encoding DNA sequences of almost 61,000 unrelated humans. Analysis of this dataset for G protein-coupled receptor (GPCR) proteins (available at GPCRdb) revealed a total of 463 naturally occurring genetic missense variations in the histamine receptor family. In this research, we have analyzed the distribution of these missense variations in the four histamine receptor subtypes concerning structural segments and sites important for GPCR function. Four missense variants R1273.52×52H, R13934.57×57H, R4096.29×29H, and E4106.30×30K, were selected for the histamine H1 receptor (H1R) that were hypothesized to affect receptor activity by interfering with the interaction pattern of the highly conserved D(E)RY motif, the so-called ionic lock. The E4106.30×30K missense variant displays higher constitutive activity in G protein signaling as compared to wild-type H1R, whereas the opposite was observed for R1273.52×52H, R13934.57×57H, and R4096.29×29H. The E4106.30×30K missense variant displays a higher affinity for the endogenous agonist histamine than wild-type H1R, whereas antagonist affinity was not affected. These data support the hypothesis that the E4106.30×30K mutation shifts the equilibrium towards active conformations. The study of these selected missense variants gives additional insight into the structural basis of H1R activation and, moreover, highlights that missense variants can result in pharmacologically different behavior as compared to wild-type receptors and should consequently be considered in the drug discovery process.


Optimization of Peptide Linker-Based Fluorescent Ligands for the Histamine H1 Receptor.

  • Zhi Yuan Kok‎ et al.
  • Journal of medicinal chemistry‎
  • 2022‎

The histamine H1 receptor (H1R) has recently been implicated in mediating cell proliferation and cancer progression; therefore, high-affinity H1R-selective fluorescent ligands are desirable tools for further investigation of this behavior in vitro and in vivo. We previously reported a H1R fluorescent ligand, bearing a peptide-linker, based on antagonist VUF13816 and sought to further explore structure-activity relationships (SARs) around the linker, orthostere, and fluorescent moieties. Here, we report a series of high-affinity H1R fluorescent ligands varying in peptide linker composition, orthosteric targeting moiety, and fluorophore. Incorporation of a boron-dipyrromethene (BODIPY) 630/650-based fluorophore conferred high binding affinity to our H1R fluorescent ligands, remarkably overriding the linker SAR observed in corresponding unlabeled congeners. Compound 31a, both potent and subtype-selective, enabled H1R visualization using confocal microscopy at a concentration of 10 nM. Molecular docking of 31a with the human H1R predicts that the optimized peptide linker makes interactions with key residues in the receptor.


Short- and Long-Term Social Recognition Memory Are Differentially Modulated by Neuronal Histamine.

  • Barbara Rani‎ et al.
  • Biomolecules‎
  • 2021‎

The ability of recognizing familiar conspecifics is essential for many forms of social interaction including reproduction, establishment of dominance hierarchies, and pair bond formation in monogamous species. Many hormones and neurotransmitters have been suggested to play key roles in social discrimination. Here we demonstrate that disruption or potentiation of histaminergic neurotransmission differentially affects short (STM) and long-term (LTM) social recognition memory. Impairments of LTM, but not STM, were observed in histamine-deprived animals, either chronically (Hdc-/- mice lacking the histamine-synthesizing enzyme histidine decarboxylase) or acutely (mice treated with the HDC irreversible inhibitor α-fluoromethylhistidine). On the contrary, restriction of histamine release induced by stimulation of the H3R agonist (VUF16839) impaired both STM and LTM. H3R agonism-induced amnesic effect was prevented by pre-treatment with donepezil, an acetylcholinesterase inhibitor. The blockade of the H3R with ciproxifan, which in turn augmented histamine release, resulted in a procognitive effect. In keeping with this hypothesis, the procognitive effect of ciproxifan was absent in both Hdc-/- and αFMH-treated mice. Our results suggest that brain histamine is essential for the consolidation of LTM but not STM in the social recognition test. STM impairments observed after H3R stimulation are probably related to their function as heteroreceptors on cholinergic neurons.


Genetically encoded sensors for measuring histamine release both in vitro and in vivo.

  • Hui Dong‎ et al.
  • Neuron‎
  • 2023‎

Histamine (HA) is a key biogenic monoamine involved in a wide range of physiological and pathological processes in both the central and peripheral nervous systems. Because the ability to directly measure extracellular HA in real time will provide important insights into the functional role of HA in complex circuits under a variety of conditions, we developed a series of genetically encoded G-protein-coupled receptor-activation-based (GRAB) HA (GRABHA) sensors with good photostability, sub-second kinetics, nanomolar affinity, and high specificity. Using these GRABHA sensors, we measured electrical-stimulation-evoked HA release in acute brain slices with high spatiotemporal resolution. Moreover, we recorded HA release in the preoptic area of the hypothalamus and prefrontal cortex during the sleep-wake cycle in freely moving mice, finding distinct patterns of HA dynamics between these specific brain regions. Thus, GRABHA sensors are robust tools for measuring extracellular HA transmission in both physiological and pathological processes.


Marked changes in signal transduction upon heteromerization of dopamine D1 and histamine H3 receptors.

  • Carla Ferrada‎ et al.
  • British journal of pharmacology‎
  • 2009‎

Functional interactions between the G protein-coupled dopamine D1 and histamine H3 receptors have been described in the brain. In the present study we investigated the existence of D1-H3 receptor heteromers and their biochemical characteristics.


Interactions between histamine H3 and dopamine D2 receptors and the implications for striatal function.

  • Carla Ferrada‎ et al.
  • Neuropharmacology‎
  • 2008‎

The striatum contains a high density of histamine H(3) receptors, but their role in striatal function is poorly understood. Previous studies have demonstrated antagonistic interactions between striatal H(3) and dopamine D(1) receptors at the biochemical level, while contradictory results have been reported about interactions between striatal H(3) and dopamine D(2) receptors. In this study, by using reserpinized mice, we demonstrate the existence of behaviorally significant antagonistic postsynaptic interactions between H(3) and D(1) and also between H(3) and dopamine D(2) receptors. The selective H(3) receptor agonist imetit inhibited, while the H(3) receptor antagonist thioperamide potentiated locomotor activation induced by either the D(1) receptor agonist SKF 38393 or the D(2) receptor agonist quinpirole. High scores of locomotor activity were obtained with H(3) receptor blockade plus D(1) and D(2) receptor co-activation, i.e., when thioperamide was co-administered with both SKF 38393 and quinpirole. Radioligand binding experiments in striatal membrane preparations showed the existence of a strong and selective H(3)-D(2) receptor interaction at the membrane level. In agonist/antagonist competition experiments, stimulation of H(3) receptors with several H(3) receptor agonists significantly decreased the affinity of D(2) receptors for the agonist. This kind of intramembrane receptor-receptor interactions are a common biochemical property of receptor heteromers. In fact, by using Bioluminescence Resonance Energy Transfer techniques in co-transfected HEK-293 cells, H(3) (but not H(4)) receptors were found to form heteromers with D(2) receptors. This study demonstrates an important role of postsynaptic H(3) receptors in the modulation of dopaminergic transmission by means of a negative modulation of D(2) receptor function.


Route to Prolonged Residence Time at the Histamine H1 Receptor: Growing from Desloratadine to Rupatadine.

  • Reggie Bosma‎ et al.
  • Journal of medicinal chemistry‎
  • 2019‎

Drug-target binding kinetics are an important predictor of in vivo drug efficacy, yet the relationship between ligand structures and their binding kinetics is often poorly understood. We show that both rupatadine (1) and desloratadine (2) have a long residence time at the histamine H1 receptor (H1R). Through development of a [3H]levocetirizine radiolabel, we find that the residence time of 1 exceeds that of 2 more than 10-fold. This was further explored with 22 synthesized rupatadine and desloratadine analogues. Methylene-linked cycloaliphatic or β-branched substitutions of desloratadine increase the residence time at the H1R, conveying a longer duration of receptor antagonism. However, cycloaliphatic substituents directly attached to the piperidine amine (i.e., lacking the spacer) have decreased binding affinity and residence time compared to their methylene-linked structural analogues. Guided by docking studies, steric constraints within the binding pocket are hypothesized to explain the observed differences in affinity and binding kinetics between analogues.


Exploring the Effect of Cyclization of Histamine H1 Receptor Antagonists on Ligand Binding Kinetics.

  • Zhiyong Wang‎ et al.
  • ACS omega‎
  • 2021‎

There is an increasing interest in guiding hit optimization by considering the target binding kinetics of ligands. However, compared to conventional structure-activity relationships, structure-kinetics relationships have not been as thoroughly explored, even for well-studied archetypical drug targets such as the histamine H1 receptor (H1R), a member of the family A G-protein coupled receptor. In this study, we show that the binding kinetics of H1R antagonists at the H1R is dependent on the cyclicity of both the aromatic head group and the amine moiety of H1R ligands, the chemotypes that are characteristic for the first-generation H1R antagonists. Fusing the two aromatic rings of H1R ligands into one tricyclic aromatic head group prolongs the H1R residence time for benchmark H1R ligands as well as for tailored synthetic analogues. The effect of constraining the aromatic rings and the basic amines is systematically explored, leading to a coherent series and detailed discussions of structure-kinetics relationships. This study shows that cyclicity has a pronounced effect on the binding kinetics.


Development of novel fluorescent histamine H1-receptor antagonists to study ligand-binding kinetics in living cells.

  • Leigh A Stoddart‎ et al.
  • Scientific reports‎
  • 2018‎

The histamine H1-receptor (H1R) is an important mediator of allergy and inflammation. H1R antagonists have particular clinical utility in allergic rhinitis and urticaria. Here we have developed six novel fluorescent probes for this receptor that are very effective for high resolution confocal imaging, alongside bioluminescence resonance energy transfer approaches to monitor H1R ligand binding kinetics in living cells. The latter technology exploits the opportunities provided by the recently described bright bioluminescent protein NanoLuc when it is fused to the N-terminus of a receptor. Two different pharmacophores (mepyramine or the fragment VUF13816) were used to generate fluorescent H1R antagonists conjugated via peptide linkers to the fluorophore BODIPY630/650. Kinetic properties of the probes showed wide variation, with the VUF13816 analogues having much longer H1R residence times relative to their mepyramine-based counterparts. The kinetics of these fluorescent ligands could also be monitored in membrane preparations providing new opportunities for future drug discovery applications.


The Target Residence Time of Antihistamines Determines Their Antagonism of the G Protein-Coupled Histamine H1 Receptor.

  • Reggie Bosma‎ et al.
  • Frontiers in pharmacology‎
  • 2017‎

The pharmacodynamics of drug-candidates is often optimized by metrics that describe target binding (Kd or Ki value) or target modulation (IC50). However, these metrics are determined at equilibrium conditions, and consequently information regarding the onset and offset of target engagement and modulation is lost. Drug-target residence time is a measure for the lifetime of the drug-target complex, which has recently been receiving considerable interest, as target residence time is shown to have prognostic value for the in vivo efficacy of several drugs. In this study, we have investigated the relation between the increased residence time of antihistamines at the histamine H1 receptor (H1R) and the duration of effective target-inhibition by these antagonists. Hela cells, endogenously expressing low levels of the H1R, were incubated with a series of antihistamines and dissociation was initiated by washing away the unbound antihistamines. Using a calcium-sensitive fluorescent dye and a label free, dynamic mass redistribution based assay, functional recovery of the H1R responsiveness was measured by stimulating the cells with histamine over time, and the recovery was quantified as the receptor recovery time. Using these assays, we determined that the receptor recovery time for a set of antihistamines differed more than 40-fold and was highly correlated to their H1R residence times, as determined with competitive radioligand binding experiments to the H1R in a cell homogenate. Thus, the receptor recovery time is proposed as a cell-based and physiologically relevant metric for the lead optimization of G protein-coupled receptor antagonists, like the H1R antagonists. Both, label-free or real-time, classical signaling assays allow an efficient and physiologically relevant determination of kinetic properties of drug molecules.


Development of a Conformational Histamine H3 Receptor Biosensor for the Synchronous Screening of Agonists and Inverse Agonists.

  • Hannes Schihada‎ et al.
  • ACS sensors‎
  • 2020‎

The histamine H3 receptor (H3R) represents a highly attractive drug target for the treatment of various central nervous system disorders, but the discovery of novel H3R targeting compounds relies on the assessment of highly amplified intracellular signaling events that do not only reflect H3R modulation and carry the risk of high false-positive and -negative screening rates. To address these limitations, we designed an intramolecular H3R biosensor based on the principle of bioluminescence resonance energy transfer (BRET) that reports the receptor's real-time conformational dynamics and provides an advanced tool to screen for both H3R agonists and inverse agonists in a live cell screening-compatible assay format. This conformational G-protein-coupled receptor (GPCR) sensor allowed us to characterize the pharmacological properties of known and new H3 receptor ligands with unprecedented accuracy. Interestingly, we found that one newly developed H3 receptor ligand possesses even stronger inverse agonistic activity than reference H3R inverse agonists including the current gold standard pitolisant. Taken together, we describe here the design and validation of the first screening-compatible H3R conformational biosensor that will aid in the discovery of novel H3R ligands and can be employed to gain deeper insights into the (in-)activation mechanism of this highly attractive drug target.


Bioluminescence Resonance Energy Transfer Based G Protein-Activation Assay to Probe Duration of Antagonism at the Histamine H3 Receptor.

  • Tamara A M Mocking‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Duration of receptor antagonism, measured as the recovery of agonist responsiveness, is gaining attention as a method to evaluate the 'effective' target-residence for antagonists. These functional assays might be a good alternative for kinetic binding assays in competition with radiolabeled or fluorescent ligands, as they are performed on intact cells and better reflect consequences of dynamic cellular processes on duration of receptor antagonism. Here, we used a bioluminescence resonance energy transfer (BRET)-based assay that monitors heterotrimeric G protein activation via scavenging of released Venus-Gβ1γ2 by NanoLuc (Nluc)-tagged membrane-associated-C-terminal fragment of G protein-coupled receptor kinase 3 (masGRK3ct-Nluc) as a tool to probe duration of G protein-coupled receptor (GPCR) antagonism. The Gαi-coupled histamine H3 receptor (H3R) was used in this study as prolonged antagonism is associated with adverse events (e.g., insomnia) and consequently, short-residence time ligands might be preferred. Due to its fast and prolonged response, this assay can be used to determine the duration of functional antagonism by measuring the recovery of agonist responsiveness upon washout of pre-bound antagonist, and to assess antagonist re-equilibration time via Schild-plot analysis. Re-equilibration of pre-incubated antagonist with agonist and receptor could be followed in time to monitor the transition from insurmountable to surmountable antagonism. The BRET-based G protein activation assay can detect differences in the recovery of H3R responsiveness and re-equilibration of pre-bound antagonists between the tested H3R antagonists. Fast dissociation kinetics were observed for marketed drug pitolisant (Wakix®) in this assay, which suggests that short residence time might be beneficial for therapeutic targeting of the H3R.


BRET-Based Biosensors to Measure Agonist Efficacies in Histamine H1 Receptor-Mediated G Protein Activation, Signaling and Interactions with GRKs and β-Arrestins.

  • Eléonore W E Verweij‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

The histamine H1 receptor (H1R) is a G protein-coupled receptor (GPCR) and plays a key role in allergic reactions upon activation by histamine which is locally released from mast cells and basophils. Consequently, H1R is a well-established therapeutic target for antihistamines that relieve allergy symptoms. H1R signals via heterotrimeric Gq proteins and is phosphorylated by GPCR kinase (GRK) subtypes 2, 5, and 6, consequently facilitating the subsequent recruitment of β-arrestin1 and/or 2. Stimulation of a GPCR with structurally different agonists can result in preferential engagement of one or more of these intracellular signaling molecules. To evaluate this so-called biased agonism for H1R, bioluminescence resonance energy transfer (BRET)-based biosensors were applied to measure H1R signaling through heterotrimeric Gq proteins, second messengers (inositol 1,4,5-triphosphate and Ca2+), and receptor-protein interactions (GRKs and β-arrestins) in response to histamine, 2-phenylhistamines, and histaprodifens in a similar cellular background. Although differences in efficacy were observed for these agonists between some functional readouts as compared to reference agonist histamine, subsequent data analysis using an operational model of agonism revealed only signaling bias of the agonist Br-phHA-HA in recruiting β-arrestin2 to H1R over Gq biosensor activation.


Non-Imidazole Histamine H₃ Ligands. Part VII. Synthesis, In Vitro and In Vivo Characterization of 5-Substituted-2-thiazol-4-n-propylpiperazines.

  • Roman Guryn‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

H₃ receptors present on histaminergic and non-histaminergic neurons, act as autoreceptors or heteroreceptors controlling neurotransmitter release and synthesis. Previous, studies have found that the compound N-methyl-N-3-phenylalkyl-2-[2-(4-n-propylpiperazin-1-yl)-1,3-thiazol-5-yl]ethan-1-amine (ADS-531, 2c) exhibits high in vitro potency toward H₃ guinea pig jejunal receptors, with pA₂ = 8.27. To optimize the structure of the lead compound ADS-531, a series of 5-substituted-2-thiazol-4-n-propylpiperazines 3 were synthesized and subjected to in vitro pharmacological characterization; the alkyl chain between position 2 of the thiazole ring and the terminal secondary N-methylamino function was elongated from three to four methylene groups and the N-methylamino functionality was substituted by benzyl-, 2-phenylethyl-, and 3-phenyl-propyl- moieties. SAR studies on novel non-imidazole, 5-substituted-2-thiazol-4-n-propyl-piperazines 3 showed that the most active compound 3a (pA₂ = 8.38), additionally possessed a weak competitive H₁-antagonistic activity. Therefore, compound ADS-531, which did not exhibit any H₁-antagonistic activity, was chosen for further evaluation for its affinity to the recombinant rat and human histamine H₃ receptors (rH₃R and hH₃R, respectively). ADS-531 exhibited nanomolar affinity for both rH₃R and hH₃R receptors. It was also shown that, ADS-531 given subchronically to rats (s.c. 3 mg/kg, 5 days) penetrated the brain, where it affected dopamine, noradrenaline and serotonin concentration; however, it did not affect histamine concentration nor feeding behavior.


4-(3-Aminoazetidin-1-yl)pyrimidin-2-amines as High-Affinity Non-imidazole Histamine H3 Receptor Agonists with in Vivo Central Nervous System Activity.

  • Gábor Wágner‎ et al.
  • Journal of medicinal chemistry‎
  • 2019‎

Despite the high diversity of histamine H3 receptor (H3R) antagonist/inverse agonist structures, partial or full H3R agonists have typically been imidazole derivatives. An in-house screening campaign intriguingly afforded the non-imidazole 4-(3-azetidin-1-yl)pyrimidin-2-amine 11b as a partial H3R agonist. Here, the design, synthesis, and structure-activity relationships of 11b analogues are described. This series yields several non-imidazole full agonists with potencies varying with the alkyl substitution pattern on the basic amine following the in vitro evaluation of H3R agonism using a cyclic adenosine monophosphate response element-luciferase reporter gene assay. The key compound VUF16839 (14d) combines nanomolar on-target activity (pKi = 8.5, pEC50 = 9.5) with weak activity on cytochrome P450 enzymes and good metabolic stability. The proposed H3R binding mode of 14d indicates key interactions similar to those attained by histamine. In vivo evaluation of 14d in a social recognition test in mice revealed an amnesic effect at 5 mg/kg intraperitoneally. The excellent in vitro and in vivo pharmacological profiles and the non-imidazole structure of 14d make it a promising tool compound in H3R research.


4-Hydroxypiperidines and Their Flexible 3-(Amino)propyloxy Analogues as Non-Imidazole Histamine H₃ Receptor Antagonist: Further Structure⁻Activity Relationship Exploration and In Vitro and In Vivo Pharmacological Evaluation.

  • Beata Olszewska‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

Presynaptic histamine H₃ receptors (H₃R) act as auto- or heteroreceptors controlling, respectively, the release of histamine and of other neurotransmitters in the central nervous system (CNS). The extracellular levels of several neurotransmitters are enhanced by H₃R antagonists, and there is a great interest for potent, brain-penetrating H₃ receptor antagonists/inverse agonists to compensate for the neurotransmitter deficits present in various neurological disorders. We have shown that 1-[(benzylfuran-2-yl)methyl]piperidinyl-4-oxyl- and benzyl- derivatives of N-propylpentan-1-amines exhibit high in vitro potencies toward the guinea pig H₃ receptor (jejunum), with pA₂ = 8.47 and 7.79, respectively (the reference compound used was thioperamide with pA₂ = 8.67). Furthermore, following the replacement of 4-hydroxypiperidine with a 3-(methylamino)propyloxy chain, the pA₂ value for the first group decreased, whereas it increased for the second group. Here, we present data on the impact of elongating the aliphatic chain between the nitrogen of 4-hydroxypiperidine or 3-(methylamino)propan-1-ol and the lipophilic residue. Additionally, the most active compound in this series of non-imidazole H₃ receptor antagonists/inverse agonists, i.e., ADS-003, was evaluated for its affinity to the recombinant rat and human histamine H₃ receptors transiently expressed in HEK-293T cells. It was shown that ADS-003, given parenterally for 5 days, reduced the food intake of rats, as well as changed histamine and noradrenaline concentrations in the rats’ brain in a manner and degree similar to the reference H₃ antagonist Ciproxifan.


Differential Role of Serines and Threonines in Intracellular Loop 3 and C-Terminal Tail of the Histamine H4 Receptor in β-Arrestin and G Protein-Coupled Receptor Kinase Interaction, Internalization, and Signaling.

  • Eléonore W E Verweij‎ et al.
  • ACS pharmacology & translational science‎
  • 2020‎

The histamine H4 receptor (H4R) activates Gαi-mediated signaling and recruits β-arrestin2 upon stimulation with histamine. β-Arrestins play a regulatory role in G protein-coupled receptor (GPCR) signaling by interacting with phosphorylated serine and threonine residues in the GPCR C-terminal tail and intracellular loop 3, resulting in receptor desensitization and internalization. Using bioluminescence resonance energy transfer (BRET)-based biosensors, we show that G protein-coupled receptor kinases (GRK) 2 and 3 are more quickly recruited to the H4R than β-arrestin1 and 2 upon agonist stimulation, whereas receptor internalization dynamics toward early endosomes was slower. Alanine-substitution revealed that a serine cluster at the distal end of the H4R C-terminal tail is essential for the recruitment of β-arrestin1/2, and consequently, receptor internalization and desensitization of G protein-driven extracellular-signal-regulated kinase (ERK)1/2 phosphorylation and label-free cellular impedance. In contrast, alanine substitution of serines and threonines in the intracellular loop 3 of the H4R did not affect β-arrestin2 recruitment and receptor desensitization, but reduced β-arrestin1 recruitment and internalization. Hence, β-arrestin recruitment to H4R requires the putative phosphorylated serine cluster in the H4R C-terminal tail, whereas putative phosphosites in the intracellular loop 3 have different effects on β-arrestin1 versus β-arrestin2. Mutation of these putative phosphosites in either intracellular loop 3 or the C-terminal tail did not affect the histamine-induced recruitment of GRK2 and GRK3 but does change the interaction of H4R with GRK5 and GRK6, respectively. Identification of H4R interactions with these proteins is a first step in the understanding how this receptor might be dysregulated in pathophysiological conditions.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: