Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 66 papers

Characterization of L1 retrotransposition with high-throughput dual-luciferase assays.

  • Yi Xie‎ et al.
  • Nucleic acids research‎
  • 2011‎

Recent studies employing genome-wide approaches have provided an unprecedented view of the scope of L1 activities on structural variations in the human genome, and further reinforced the role of L1s as one of the major driving forces behind human genome evolution. The rapid identification of novel L1 elements by these high-throughput approaches demands improved L1 functional assays. However, the existing assays use antibiotic selection markers or fluorescent proteins as reporters; neither is amenable to miniaturization. To increase assay sensitivity and throughput, we have developed a third generation assay by using dual-luciferase reporters, in which firefly luciferase is used as the retrotransposition indicator and Renilla luciferase is encoded on the same or separate plasmid for normalization. This novel assay is highly sensitive and has a broad dynamic range. Quantitative data with high signal-to-noise ratios can be obtained from 24- up to 96-well plates in 2-4 days after transfection. Using the dual-luciferase assays, we have characterized profiles of retrotransposition by various human and mouse L1 elements, and detailed the kinetics of L1 retrotransposition in cultured cells. Its high-throughput and short assay timeframe make it well suited for routine tests as well as large-scale screening efforts.


High-throughput screening of cell-free riboswitches by fluorescence-activated droplet sorting.

  • Takeshi Tabuchi‎ et al.
  • Nucleic acids research‎
  • 2022‎

Cell-free systems that display complex functions without using living cells are emerging as new platforms to test our understanding of biological systems as well as for practical applications such as biosensors and biomanufacturing. Those that use cell-free protein synthesis (CFPS) systems to enable genetically programmed protein synthesis have relied on genetic regulatory components found or engineered in living cells. However, biological constraints such as cell permeability, metabolic stability, and toxicity of signaling molecules prevent development of cell-free devices using living cells even if cell-free systems are not subject to such constraints. Efforts to engineer regulatory components directly in CFPS systems thus far have been based on low-throughput experimental approaches, limiting the availability of basic components to build cell-free systems with diverse functions. Here, we report a high-throughput screening method to engineer cell-free riboswitches that respond to small molecules. Droplet-sorting of riboswitch variants in a CFPS system rapidly identified cell-free riboswitches that respond to compounds that are not amenable to bacterial screening methods. Finally, we used a histamine riboswitch to demonstrate chemical communication between cell-sized droplets.


Quantitative, titratable and high-throughput reporter assays to measure DNA double strand break repair activity in cells.

  • Eeson Rajendra‎ et al.
  • Nucleic acids research‎
  • 2024‎

Repair of DNA damage is essential for the maintenance of genome stability and cell viability. DNA double strand breaks (DSBs) constitute a toxic class of DNA lesion and multiple cellular pathways exist to mediate their repair. Robust and titratable assays of cellular DSB repair (DSBR) are important to functionally interrogate the integrity and efficiency of these mechanisms in disease models as well as in response to genetic or pharmacological perturbations. Several variants of DSBR reporters are available, however these are often limited by throughput or restricted to specific cellular models. Here, we describe the generation and validation of a suite of extrachromosomal reporter assays that can efficiently measure the major DSBR pathways of homologous recombination (HR), classical nonhomologous end joining (cNHEJ), microhomology-mediated end joining (MMEJ) and single strand annealing (SSA). We demonstrate that these assays can be adapted to a high-throughput screening format and that they are sensitive to pharmacological modulation, thus providing mechanistic and quantitative insights into compound potency, selectivity, and on-target specificity. We propose that these reporter assays can serve as tools to dissect the interplay of DSBR pathway networks in cells and will have broad implications for studies of DSBR mechanisms in basic research and drug discovery.


Sensitive ADAR editing reporter in cancer cells enables high-throughput screening of small molecule libraries.

  • Kajsa Fritzell‎ et al.
  • Nucleic acids research‎
  • 2019‎

Adenosine to inosine editing is common in the human transcriptome and changes of this essential activity is associated with disease. Children with ADAR1 mutations develop fatal Aicardi-Goutières syndrome characterized by aberrant interferon expression. In contrast, ADAR1 overexpression is associated with increased malignancy of breast, lung and liver cancer. ADAR1 silencing in breast cancer cells leads to increased apoptosis, suggesting an anti-apoptotic function that promotes cancer progression. Yet, suitable high-throughput editing assays are needed to efficiently screen chemical libraries for modifiers of ADAR1 activity. We describe the development of a bioluminescent reporter system that facilitates rapid and accurate determination of endogenous editing activity. The system is based on the highly sensitive and quantitative Nanoluciferase that is conditionally expressed upon reporter-transcript editing. Stably introduced into cancer cell lines, the system reports on elevated endogenous ADAR1 editing activity induced by interferon as well as knockdown of ADAR1 and ADAR2. In a single-well setup we used the reporter in HeLa cells to screen a small molecule library of 33 000 compounds. This yielded a primary hit rate of 0.9% at 70% inhibition of editing. Thus, we provide a key tool for high-throughput identification of modifiers of A-to-I editing activity in cancer cells.


Development of a universal radioactive DNA methyltransferase inhibition test for high-throughput screening and mechanistic studies.

  • Christina Gros‎ et al.
  • Nucleic acids research‎
  • 2013‎

DNA methylation is an important epigenetic mark in eukaryotes, and aberrant pattern of this modification is involved in numerous diseases such as cancers. Interestingly, DNA methylation is reversible and thus is considered a promising therapeutic target. Therefore, there is a need for identifying new small inhibitors of C5 DNA methyltransferases (DNMTs). Despite the development of numerous in vitro DNMT assays, there is a lack of reliable tests suitable for high-throughput screening, which can also give insights into inhibitor mechanisms of action. We developed a new test based on scintillation proximity assay meeting these requirements. After optimizing our assay on human DNMT1 and calibrating it with two known inhibitors, we carried out S-Adenosyl-l-Methionine and DNA competition studies on three inhibitors and were able to determine each mechanism of action. Finally, we showed that our test was applicable to 3 other methyltransferases sources: human DNMT3A, bacterial M.SssI and cellular extracts as well.


A rapid and sensitive high-throughput screening method to identify compounds targeting protein-nucleic acids interactions.

  • Nicole Alonso‎ et al.
  • Nucleic acids research‎
  • 2015‎

DNA-binding and RNA-binding proteins are usually considered 'undruggable' partly due to the lack of an efficient method to identify inhibitors from existing small molecule repositories. Here we report a rapid and sensitive high-throughput screening approach to identify compounds targeting protein-nucleic acids interactions based on protein-DNA or protein-RNA interaction enzyme-linked immunosorbent assays (PDI-ELISA or PRI-ELISA). We validated the PDI-ELISA method using the mammalian high-mobility-group protein AT-hook 2 (HMGA2) as the protein of interest and netropsin as the inhibitor of HMGA2-DNA interactions. With this method we successfully identified several inhibitors and an activator for HMGA2-DNA interactions from a collection of 29 DNA-binding compounds. Guided by this screening excise, we showed that netropsin, the specific inhibitor of HMGA2-DNA interactions, strongly inhibited the differentiation of the mouse pre-adipocyte 3T3-L1 cells into adipocytes, most likely through a mechanism by which the inhibition is through preventing the binding of HMGA2 to the target DNA sequences. This method should be broadly applicable to identify compounds or proteins modulating many DNA-binding or RNA-binding proteins.


Two-photon fluorescence cross-correlation spectroscopy as a potential tool for high-throughput screening of DNA repair activity.

  • Maddalena Collini‎ et al.
  • Nucleic acids research‎
  • 2005‎

Several lines of evidence indicate that differences in DNA repair capacity are an important source of variability in cancer risk. However, traditional assays for measurement of DNA repair activity in human samples are laborious and time-consuming. DNA glycosylases are the first step in base excision repair of a variety of modified DNA bases. Here, we describe the development of a new sensitive DNA glycosylase assay based on fluorescence cross-correlation spectroscopy (FCCS) with two-photon excitation. FCCS was applied to the measurement of uracil DNA glycosylase activity of human cell extracts and validated by comparison with standard gel electrophoresis assay. Our results indicate that FCCS can be adapted to efficient assays for DNA glycosylase activity in protein extracts from human cells. This method has a potential for the development of automated screening of large number of samples.


High-throughput assay and engineering of self-cleaving ribozymes by sequencing.

  • Shungo Kobori‎ et al.
  • Nucleic acids research‎
  • 2015‎

Self-cleaving ribozymes are found in all domains of life and are believed to play important roles in biology. Additionally, self-cleaving ribozymes have been the subject of extensive engineering efforts for applications in synthetic biology. These studies often involve laborious assays of multiple individual variants that are either designed rationally or discovered through selection or screening. However, these assays provide only a limited view of the large sequence space relevant to the ribozyme function. Here, we report a strategy that allows quantitative characterization of greater than 1000 ribozyme variants in a single experiment. We generated a library of predefined ribozyme variants that were converted to DNA and analyzed by high-throughput sequencing. By counting the number of cleaved and uncleaved reads of every variant in the library, we obtained a complete activity profile of the ribozyme pool which was used to both analyze and engineer allosteric ribozymes.


PIXUL-ChIP: integrated high-throughput sample preparation and analytical platform for epigenetic studies.

  • Karol Bomsztyk‎ et al.
  • Nucleic acids research‎
  • 2019‎

Chromatin immunoprecipitation (ChIP) is the most widely used approach for identification of genome-associated proteins and their modifications. We have previously introduced a microplate-based ChIP platform, Matrix ChIP, where the entire ChIP procedure is done on the same plate without sample transfers. Compared to conventional ChIP protocols, the Matrix ChIP assay is faster and has increased throughput. However, even with microplate ChIP assays, sample preparation and chromatin fragmentation (which is required to map genomic locations) remains a major bottleneck. We have developed a novel technology (termed 'PIXUL') utilizing an array of ultrasound transducers for simultaneous shearing of samples in standard 96-well microplates. We integrated PIXUL with Matrix ChIP ('PIXUL-ChIP'), that allows for fast, reproducible, low-cost and high-throughput sample preparation and ChIP analysis of 96 samples (cell culture or tissues) in one day. Further, we demonstrated that chromatin prepared using PIXUL can be used in an existing ChIP-seq workflow. Thus, the high-throughput capacity of PIXUL-ChIP provides the means to carry out ChIP-qPCR or ChIP-seq experiments involving dozens of samples. Given the complexity of epigenetic processes, the use of PIXUL-ChIP will advance our understanding of these processes in health and disease, as well as facilitate screening of epigenetic drugs.


Screening for functional transcriptional and splicing regulatory variants with GenIE.

  • Sarah E Cooper‎ et al.
  • Nucleic acids research‎
  • 2020‎

Genome-wide association studies (GWAS) have identified numerous genetic loci underlying human diseases, but a fundamental challenge remains to accurately identify the underlying causal genes and variants. Here, we describe an arrayed CRISPR screening method, Genome engineering-based Interrogation of Enhancers (GenIE), which assesses the effects of defined alleles on transcription or splicing when introduced in their endogenous genomic locations. We use this sensitive assay to validate the activity of transcriptional enhancers and splice regulatory elements in human induced pluripotent stem cells (hiPSCs), and develop a software package (rgenie) to analyse the data. We screen the 99% credible set of Alzheimer's disease (AD) GWAS variants identified at the clusterin (CLU) locus to identify a subset of likely causal variants, and employ GenIE to understand the impact of specific mutations on splicing efficiency. We thus establish GenIE as an efficient tool to rapidly screen for the role of transcribed variants on gene expression.


PINCER: improved CRISPR/Cas9 screening by efficient cleavage at conserved residues.

  • Brendan Veeneman‎ et al.
  • Nucleic acids research‎
  • 2020‎

CRISPR/Cas9 functional genomic screens have emerged as essential tools in drug target discovery. However, the sensitivity of available genome-wide CRISPR libraries is impaired by guides which inefficiently abrogate gene function. While Cas9 cleavage efficiency optimization and essential domain targeting have been developed as independent guide design rationales, no library has yet combined these into a single cohesive strategy to knock out gene function. Here, in a massive reanalysis of CRISPR tiling data using the most comprehensive feature database assembled, we determine which features of guides and their targets best predict activity and how to best combine them into a single guide design algorithm. We present the ProteIN ConsERvation (PINCER) genome-wide CRISPR library, which for the first time combines enzymatic efficiency optimization with conserved length protein region targeting, and also incorporates domains, coding sequence position, U6 termination (TTT), restriction sites, polymorphisms and specificity. Finally, we demonstrate superior performance of the PINCER library compared to alternative genome-wide CRISPR libraries in head-to-head validation. PINCER is available for individual gene knockout and genome-wide screening for both the human and mouse genomes.


Validation of a fluorescence-based screening concept to identify ribosome assembly defects in Escherichia coli.

  • Rainer Nikolay‎ et al.
  • Nucleic acids research‎
  • 2014‎

While the structure of mature ribosomes is analyzed in atomic detail considerably less is known about their assembly process in living cells. This is mainly due to technical and conceptual hurdles. To analyze ribosome assembly in vivo, we designed and engineered an Escherichiacoli strain--using chromosomal gene knock-in techniques--that harbors large and small ribosomal subunits labeled with the fluorescent proteins EGFP and mCherry, respectively. A thorough characterization of this reporter strain revealed that its growth properties and translation apparatus were wild-type like. Alterations in the ratio of EGFP over mCherry fluorescence are supposed to indicate ribosome assembly defects. To provide proof of principle, subunit specific assembly defects were provoked and could be identified by both manual and fully automated fluorometric in vivo assays. This is to our knowledge the first methodology that directly detects ribosome assembly defects in vivo in a high-throughput compatible format. Screening of knock-out collections and small molecule libraries will allow identification of new ribosome assembly factors and possible inhibitors.


Identification of RNA polymerase III-transcribed Alu loci by computational screening of RNA-Seq data.

  • Anastasia Conti‎ et al.
  • Nucleic acids research‎
  • 2015‎

Of the ∼ 1.3 million Alu elements in the human genome, only a tiny number are estimated to be active in transcription by RNA polymerase (Pol) III. Tracing the individual loci from which Alu transcripts originate is complicated by their highly repetitive nature. By exploiting RNA-Seq data sets and unique Alu DNA sequences, we devised a bioinformatic pipeline allowing us to identify Pol III-dependent transcripts of individual Alu elements. When applied to ENCODE transcriptomes of seven human cell lines, this search strategy identified ∼ 1300 Alu loci corresponding to detectable transcripts, with ∼ 120 of them expressed in at least three cell lines. In vitro transcription of selected Alus did not reflect their in vivo expression properties, and required the native 5'-flanking region in addition to internal promoter. We also identified a cluster of expressed AluYa5-derived transcription units, juxtaposed to snaR genes on chromosome 19, formed by a promoter-containing left monomer fused to an Alu-unrelated downstream moiety. Autonomous Pol III transcription was also revealed for Alus nested within Pol II-transcribed genes. The ability to investigate Alu transcriptomes at single-locus resolution will facilitate both the identification of novel biologically relevant Alu RNAs and the assessment of Alu expression alteration under pathological conditions.


Different N-terminal isoforms of Oct-1 control expression of distinct sets of genes and their high levels in Namalwa Burkitt's lymphoma cells affect a wide range of cellular processes.

  • Elizaveta V Pankratova‎ et al.
  • Nucleic acids research‎
  • 2016‎

Oct-1 transcription factor has various functions in gene regulation. Its expression level is increased in several types of cancer and is associated with poor survival prognosis. Here we identified distinct Oct-1 protein isoforms in human cells and compared gene expression patterns and functions for Oct-1A, Oct-1L, and Oct-1X isoforms that differ by their N-terminal sequences. The longest isoform, Oct-1A, is abundantly expressed and is the main Oct-1 isoform in most of human tissues. The Oct-1L and the weakly expressed Oct-1X regulate the majority of Oct-1A targets as well as additional sets of genes. Oct-1X controls genes involved in DNA replication, DNA repair, RNA processing, and cellular response to stress. The high level of Oct-1 isoforms upregulates genes related to cell cycle progression and activates proliferation both in Namalwa Burkitt's lymphoma cells and primary human fibroblasts. It downregulates expression of genes related to antigen processing and presentation, cytokine-cytokine receptor interaction, oxidative metabolism, and cell adhesion, thus facilitating pro-oncogenic processes.


A genome-wide RNAi screen identifies the SMC5/6 complex as a non-redundant regulator of a Topo2a-dependent G2 arrest.

  • Katharina Deiss‎ et al.
  • Nucleic acids research‎
  • 2019‎

The Topo2a-dependent arrest is associated with faithful segregation of sister chromatids and has been identified as dysfunctional in numerous tumour cell lines. This genome-protecting pathway is poorly understood and its characterization is of significant interest, potentially offering interventional opportunities in relation to synthetic lethal behaviours in arrest-defective tumours. Using the catalytic Topo2a inhibitor ICRF193, we have performed a genome-wide siRNA screen in arrest-competent, non-transformed cells, to identify genes essential for this arrest mechanism. In addition, we have counter-screened several DNA-damaging agents and demonstrate that the Topo2a-dependent arrest is genetically distinct from DNA damage checkpoints. We identify the components of the SMC5/6 complex, including the activity of the E3 SUMO ligase NSE2, as non-redundant players that control the timing of the Topo2a-dependent arrest in G2. We have independently verified the NSE2 requirement in fibroblasts from patients with germline mutations that cause severely reduced levels of NSE2. Through imaging Topo2a-dependent G2 arrested cells, an increased interaction between Topo2a and NSE2 is observed at PML bodies, which are known SUMOylation hotspots. We demonstrate that Topo2a is SUMOylated in an ICRF193-dependent manner by NSE2 at a novel non-canonical site (K1520) and that K1520 sumoylation is required for chromosome segregation but not the G2 arrest.


An overview of the PubChem BioAssay resource.

  • Yanli Wang‎ et al.
  • Nucleic acids research‎
  • 2010‎

The PubChem BioAssay database (http://pubchem.ncbi.nlm.nih.gov) is a public repository for biological activities of small molecules and small interfering RNAs (siRNAs) hosted by the US National Institutes of Health (NIH). It archives experimental descriptions of assays and biological test results and makes the information freely accessible to the public. A PubChem BioAssay data entry includes an assay description, a summary and detailed test results. Each assay record is linked to the molecular target, whenever possible, and is cross-referenced to other National Center for Biotechnology Information (NCBI) database records. 'Related BioAssays' are identified by examining the assay target relationship and activity profile of commonly tested compounds. A key goal of PubChem BioAssay is to make the biological activity information easily accessible through the NCBI information retrieval system-Entrez, and various web-based PubChem services. An integrated suite of data analysis tools are available to optimize the utility of the chemical structure and biological activity information within PubChem, enabling researchers to aggregate, compare and analyze biological test results contributed by multiple organizations. In this work, we describe the PubChem BioAssay database, including data model, bioassay deposition and utilities that PubChem provides for searching, downloading and analyzing the biological activity information contained therein.


EHFPI: a database and analysis resource of essential host factors for pathogenic infection.

  • Yang Liu‎ et al.
  • Nucleic acids research‎
  • 2015‎

High-throughput screening and computational technology has greatly changed the face of microbiology in better understanding pathogen-host interactions. Genome-wide RNA interference (RNAi) screens have given rise to a new class of host genes designated as Essential Host Factors (EHFs), whose knockdown effects significantly influence pathogenic infections. Therefore, we present the first release of a manually-curated bioinformatics database and analysis resource EHFPI (Essential Host Factors for Pathogenic Infection, http://biotech.bmi.ac.cn/ehfpi). EHFPI captures detailed article, screen, pathogen and phenotype annotation information for a total of 4634 EHF genes of 25 clinically important pathogenic species. Notably, EHFPI also provides six powerful and data-integrative analysis tools, i.e. EHF Overlap Analysis, EHF-pathogen Network Analysis, Gene Enrichment Analysis, Pathogen Interacting Proteins (PIPs) Analysis, Drug Target Analysis and GWAS Candidate Gene Analysis, which advance the comprehensive understanding of the biological roles of EHF genes, as in diverse perspectives of protein-protein interaction network, drug targets and diseases/traits. The EHFPI web interface provides appropriate tools that allow efficient query of EHF data and visualization of custom-made analysis results. EHFPI data and tools shall keep available without charge and serve the microbiology, biomedicine and pharmaceutics research communities, to finally facilitate the development of diagnostics, prophylactics and therapeutics for human pathogens.


PubChem's BioAssay Database.

  • Yanli Wang‎ et al.
  • Nucleic acids research‎
  • 2012‎

PubChem (http://pubchem.ncbi.nlm.nih.gov) is a public repository for biological activity data of small molecules and RNAi reagents. The mission of PubChem is to deliver free and easy access to all deposited data, and to provide intuitive data analysis tools. The PubChem BioAssay database currently contains 500,000 descriptions of assay protocols, covering 5000 protein targets, 30,000 gene targets and providing over 130 million bioactivity outcomes. PubChem's bioassay data are integrated into the NCBI Entrez information retrieval system, thus making PubChem data searchable and accessible by Entrez queries. Also, as a repository, PubChem constantly optimizes and develops its deposition system answering many demands of both high- and low-volume depositors. The PubChem information platform allows users to search, review and download bioassay description and data. The PubChem platform also enables researchers to collect, compare and analyze biological test results through web-based and programmatic tools. In this work, we provide an update for the PubChem BioAssay resource, including information content growth, data model extension and new developments of data submission, retrieval, analysis and download tools.


DNA G-quadruplexes for native mass spectrometry in potassium: a database of validated structures in electrospray-compatible conditions.

  • Anirban Ghosh‎ et al.
  • Nucleic acids research‎
  • 2021‎

G-quadruplex DNA structures have become attractive drug targets, and native mass spectrometry can provide detailed characterization of drug binding stoichiometry and affinity, potentially at high throughput. However, the G-quadruplex DNA polymorphism poses problems for interpreting ligand screening assays. In order to establish standardized MS-based screening assays, we studied 28 sequences with documented NMR structures in (usually ∼100 mM) potassium, and report here their circular dichroism (CD), melting temperature (Tm), NMR spectra and electrospray mass spectra in 1 mM KCl/100 mM trimethylammonium acetate. Based on these results, we make a short-list of sequences that adopt the same structure in the MS assay as reported by NMR, and provide recommendations on using them for MS-based assays. We also built an R-based open-source application to build and consult a database, wherein further sequences can be incorporated in the future. The application handles automatically most of the data processing, and allows generating custom figures and reports. The database is included in the g4dbr package (https://github.com/EricLarG4/g4dbr) and can be explored online (https://ericlarg4.github.io/G4_database.html).


ALT-FISH quantifies alternative lengthening of telomeres activity by imaging of single-stranded repeats.

  • Lukas Frank‎ et al.
  • Nucleic acids research‎
  • 2022‎

Alternative lengthening of telomeres (ALT) occurs in ∼10% of cancer entities. However, little is known about the heterogeneity of ALT activity since robust ALT detection assays with high-throughput in situ readouts are lacking. Here, we introduce ALT-FISH, a method to quantitate ALT activity in single cells from the accumulation of single-stranded telomeric DNA and RNA. It involves a one-step fluorescent in situ hybridization approach followed by fluorescence microscopy imaging. Our method reliably identified ALT in cancer cell lines from different tumor entities and was validated in three established models of ALT induction and suppression. Furthermore, we successfully applied ALT-FISH to spatially resolve ALT activity in primary tissue sections from leiomyosarcoma and neuroblastoma tumors. Thus, our assay provides insights into the heterogeneity of ALT tumors and is suited for high-throughput applications, which will facilitate screening for ALT-specific drugs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: